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Odenweller, A., Ueckerdt, F., Nemet, G.F., Jensterle, M., Luderer, G., in preparation. 
Growth of electrolysis required to make green hydrogen a substantial climate change 
mitigation option

Bottleneck and indicator: Electrolysis capacity expansion

EU electrolysis capacity (per region) EU electrolysis capacity (per status) EU electrolysis capacity: required growth
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E-fuels require two to fourteen times more electricity than a direct electrification
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Fierce debate around EU delegated act on RFNBOs. Environmentalists: „Additionality of renewables is required because“
i) despite substantial shares, renewable electricity is and will remain scarce
ii) diverting renewable electricity away from more efficient and thus more effective direct use increases emissions
 trade-off between short-term mitigation and (green) hydrogen scale up. What phase-in period of strict criteria?
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High today‘s costs, high CO2 prices required.
Future innovation possible in case of massive scaling.

Competitiveness of e-fuels only ~2040
Massive subsidies required until then.

E-fuels not competitive in the next 1-2 decades. Immense policy support required.

CO2 price 
trajectories of

global well-
below 2°C 
scenarios

e-fuels from 100% renewable electricity.
CO2 prices use life-cycle GHG emissions.

Immense and 

continuous 

policy support 

required (e.g. 
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as CCfDs)

e-fuel production based on 
100% renewable electricity 
(wind, solar PV).
CO2 price calculation based 
on life-cycle GHG emissions.
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Final energy consumption (EJ), non-electric end-use sectors (OECD, 2014, incl. feedstocks)
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significantly cheaper 
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high temp. heat (>400°C),
heavy-duty transport

Aviation, shipping, chemical 
feedstocks, primary steel

3) Impossible-to-
electrify sectors

1) Direct electrification 
significantly cheaper 
than e-fuels

Direct electrification (illustrative)

E-fuels replacing natural gas

E-fuels replacing liquids

Marginal
abatement

costs
€/tCO2

(2020-25)

Huge hydrogen
no-regret markets!
~5000 GW additional 

wind/solar PV
~3000 GW electrolysis
(in the OECD alone)

Hydrogen replacing natural gas
(w/o end-use transformation)

Hydrogen replacing liquids
(w/o end-use transformation)

Hydrogen end-use 
transformation
costs (e.g. for fuel 
cells, illustrative)

Merit order of hydrogen 
and e-fuel demands
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SCENARIO RANGES ?

until 2030:
small corridor

In 2030:
dena/BDI assume
high e-fuel
imports

In 2045: huge
ranges

In 2045: huge
ranges In 2045: huge

ranges

≠ POLITICAL OPTION SPACE

TECHNO-ECONOMIC UNCERTAINTIES!
WITH BOTH INDIRECT AND DIRECT ELECTRIFICATION

Scenarios: What do the “big 5” say about hydrogen and e-fuels?

HYDROGEN SUPPLY EXPANSION?
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Scenarios climate neutrality Germany:
Significant techno-economic uncertainties  Do not pick and impose one pathway

Ariadne scenarios for

Germany climate neutrality 2045

District heating
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“no-regret” 
sectors and
demands

Scenarios climate neutrality Germany:
Significant techno-economic uncertainties  Do not pick and impose one pathway

District heating

Ariadne scenarios for

Germany climate neutrality 2045
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Final energy in buildings

Scenarios climate neutrality Germany:
Significant techno-economic uncertainties  Do not pick and impose one pathway

Ariadne scenarios for

Germany climate neutrality 2045

District heating
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Scenarios climate neutrality Germany:
Significant techno-economic uncertainties  Do not pick and impose one pathway

Ariadne scenarios for

Germany climate neutrality 2045

District heating

An adaptive hydrogen strategy

1. Do not pick and impose one
pathway. e.g. no betting on broad
availability of low-cost hydrogen, as it
risks to lockin fossil fuel dependence

2. Foster robust options:
efficiency/electrification, domestic
renewables, hydrogen supply (imports) 
and backbone infrastructure for least-
regret applications
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No-regrets: all scenarios show 1) dramatic expansion of domestic renewables &
2) substantial hydrogen/e-fuel imports

Less use of domestic
land and renewable resources

More renewable 
capacity abroad

More direct
electrification

More hydrogen
and e-fuels

Power demand
2021

Wind&Solar
2021

Domestic renewables
for electrification

Renewables abroad
(e-fuels)

(hydrogen)

2045 climate neutrality: renewable electricity demands Germany
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Scenarios climate neutrality Germany:
Significant techno-economic uncertainties  Do not pick and impose one pathway

Ariadne scenarios for

Germany climate neutrality 2045

District heating

An adaptive hydrogen strategy

1. Do not pick and impose one
pathway. e.g. no betting on broad
availability of low-cost hydrogen, as it
risks to lockin fossil fuel dependence

2. Foster robust options:
efficiency/electrification, domestic
renewables, hydrogen supply (imports) 
and backbone infrastructure for least-
regret applications

3. Learn and adapt strategy:
Learn about limits of direct
electrification and hydrogen supply. 
Broaden the application of hydrogen,
if availability and costs get more clear
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Focused
prioritize hydrogen for
„no-regret sectors“ 
(consensus)
primary steel, ammonia,
aviation, shipping,
olefins (huge markets)

Broad
all sectors, including passenger 
car, buildings

H2 demand side: 
which applications?

Grey area middleground
- low-temp. heat industry 
(steam making)
- high-temp. heat (e.g. glass 
making, or cement)
- long-haul freight transport 
(trucks)

Two dimensions in the debate

More direct
electrification

More indirect
electrification

More domestic
renewable expansion

More renewable
imports

Start

Focused

... do not bet on abundant and

cheap hydrogen/e-fuels.
... learn and potentially

broaden iteratively...
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availability of low-cost hydrogen, as it
risks to lockin fossil fuel dependence
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renewables, hydrogen supply (imports) 
and backbone infrastructure for least-
regret applications

• Learn and adapt strategy:
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Broaden the application of hydrogen, if
availability and costs get more clear
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›BACKUP SLIDES
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NACHFRAGE IN INDUSTRIE UND FLUGVERKEHR IST BIS MINDESTENS 2030/35
GRÖßER ALS DAS ANGEBOT AN GRÜNEM WASSERSTOFF

Industrie: Bei regulären Anlagenaustausch 

entstehen Wasserstoffbedarfe von 40 TWh in 

2030 und 80 TWh in 2035.

Um 5 bis 10 Jahre vorgezogene Investitionen 

erhöhen diese Menge auf 80 bis 120 TWh in 

2030

Instrumente: IPCEI + CCfDs (nur für Industrie)

Im Fernflugverkehr können bis zu

120 TWh E-Kerosin verwendet werden. Dafür 

können E-Fuel-Quoten angehoben werden.

Instrumente: (erhöhte) E-Fuel-Quoten im 

Flugverkehr
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