Rapport d'étude
Nº 04 | 2021

Biométhanisation en milieu agricole :
Technologies, expérience ontarienne et rentabilité économique

Adam Beauvais
Biométhanisation en milieu agricole : Technologies, expérience ontarienne et rentabilité économique

Adam Beauvais
Étudiant à la Maîtrise en management et développement durable, HEC Montréal
Projet d’intégration réalisé sous la supervision de Pierre-Olivier Pineau, professeur titulaire, Département de sciences de la décision, et titulaire de la Chaire de gestion du secteur de l’énergie, HEC Montréal.

Note aux lecteurs : Les rapports d’étude de la Chaire de gestion du secteur de l’énergie sont des publications aux fins d’information et de discussion. Ils ont été réalisés par des étudiants sous la supervision d’un professeur. Ils ne devraient pas être reproduits sans l’autorisation écrite du (des) auteur(s). Les commentaires et suggestions sont bienvenus, et devraient être adressés à (aux) auteur(s).

À propos de la Chaire de gestion du secteur de l’énergie : La Chaire de gestion du secteur de l’énergie de HEC Montréal a pour mission d’augmenter les connaissances sur les enjeux liés à l’énergie, dans une perspective de développement durable, d’optimisation et d’adéquation entre les sources d’énergie et les besoins de la société. La création de cette chaire et de ce rapport est rendue possible grâce au soutien d’entreprises partenaires.

Chaire de gestion du secteur de l’énergie
HEC Montréal
3000, chemin de la Côte-Sainte-Catherine
Montréal (Québec) H3T 2A7 CANADA
energie.hec.ca

Août 2021

©2021 HEC Montréal. Tous droits réservés. Les textes publiés dans la série des rapports d’étude n’engagent que la responsabilité de(s) auteur(s)
Table des matières

Sommaire exécutif ... 5
Introduction .. 6
Section 1 : Revue de la littérature actuelle sur les procédés anaérobies ... 9
 Classification des procédés ... 9
 Valorisation du biogaz ... 11
 Production d’électricité avec la cogénération .. 12
 Transformation en gaz naturel renouvelable pour injection ... 12
Présentation des procédés de digestion anaérobie ... 13
 BEKON ... 13
 Andion ... 14
 Microferm – Bright biométhane ... 16
 CCI Bio Energy ... 17
 Muckbuster / Flexibuster .. 18
 CH4 Biogas .. 19
 CH Four Biogas ... 20
 Agrikomp ... 21
 DLS Biogas .. 22
 Bio-En Power inc. ... 23
 Bio-Terre systems ... 24
 Electrigaz ... 25
 PlanET Biogas Solutions ... 26
 BIOFerm .. 27
 Biolectric ... 28
 Terix Envirogaz ... 29
Comparaison des technologies de digestion anaérobie .. 31
Section 2 : Présentation de la réglementation en Ontario et au Québec .. 32
 Approche réglementaire en Ontario .. 32
 Exigences du programme RMADF .. 33
 Incitatsifs disponibles ... 36
 Approche réglementaire québécoise .. 38
 Exigences du programme.. 38
 Incitatifs disponibles .. 39
Analyse et interprétation .. 41
Section 3 : Analyse économique pour une ferme typique au Québec .. 43
 CAPEX et OPEX .. 43
 Étude de cas - Production compacte et automatisée de biogaz à la ferme – Canada 44
 Bénéfices socio-économiques .. 47
 Autres bénéfices à considérer .. 48
 Analyse économique des technologies de purification ... 49
Conclusion .. 52
Annexe 1 : Portrait de la valorisation du biogas et du gaz naturel renouvelable au Canada 54
Annexe 2 : Matières ne provenant pas d’une exploitation agricole ... 55
Annexe 3 : Potentiel méthanogène de différentes matières organiques .. 57
Annexe 4 : Production de fumier annuel selon le type de bétail .. 58
Annexe 5 : Projets confirmés de biométhanisation au Québec, dans le programme PTMOBC 59
Annexe 6 : Estimation du coût d’un système de digestion anaérobie pour une ferme laitière typique au Québec .. 60
Bibliographie .. 61
Sommaire exécutif

Le présent rapport fait état de la situation concernant la biométhanisation en contexte agricole au Québec. La digestion anaérobie représente une opportunité intéressante pour les exploitations agricoles afin de sécuriser un approvisionnement en énergie renouvelable, de générer une source de revenu additionnel et de contribuer à une gestion saine des matières résiduelles fertilisantes issues des activités agricoles. Ce document décrit brièvement plus de 15 technologies de biométhanisation disponibles au Canada, en s’attardant sur les étapes des procédés, la siccité des matières pouvant être traitées, la température de digestion et le fonctionnement des réacteurs.

Ensuite, ce rapport présente l’approche réglementaire en Ontario en ce qui a trait la biométhanisation, afin de comprendre pourquoi cette province connaît une plus forte présence des technologies de digestion anaérobie en milieu agricole comparativement au Québec. L’existence de programmes de soutien conçus spécifiquement pour le secteur agricole, un allègement réglementaire pour les installations sur ferme et un tarif d’achat avantageux pour la production d’électricité renouvelable par cogénération dans la province ontarienne semblent expliquer l’avance de l’Ontario dans l’intégration de ces technologies. Au Québec, on remarque une absence de considération pour le secteur agricole dans le programme de soutien en vigueur pour les projets de biométhanisation. Jumelées à une abondance d’énergie renouvelable grâce à l’hydroélectricité, et son bas prix, les conditions ne sont pas favorables pour les projets de cogénération.

Selon l’analyse économique effectuée, les projets de cogénération à petite échelle peuvent être rentables pour une ferme typique du Québec (ferme laitière avec environ 75 vaches). Ce type de projet se démarque par la simplicité du procédé, un niveau d’investissement plus faible (comparativement à un projet de gaz naturel renouvelable, GNR) ainsi qu’une valorisation énergétique sous forme d’électricité et de chaleur étant très utile pour les exploitations agricoles. Au Québec, les conditions en place favorisent le développement de projet de biométhanisation, notamment en raison du tarif d’achat garanti offert par Énergir. Toutefois, les investissements additionnels nécessaires pour l’acquisition de technologie de purification requièrent des projets à plus grande échelle afin d’assurer leur viabilité économique, ce qui n’est pas adapté au contexte des fermes québécoises. Dans le cas de l’unique projet de GNR en milieu agricole, développé par la Coop Carbone en collaboration avec la Coop Agri-Énergie Warwick, le succès repose sur une approche innovante regroupant plus d’une dizaine de producteurs agricoles de la région.
Introduction

Au Québec, les cultures agricoles et l’élevage représentent la plus importante industrie du secteur primaire. Ils affichent des recettes monétaires de 9,7 milliards de dollars pour 2019, la production animale représentant environ 61% des recettes du secteur (MAPAQ, 2020). Côté emploi, c’est plus de 42 000 Québécois qui ont l’agriculture comme métier, et on recense environ 29 000 exploitations agricoles dans la province (Union des Producteurs Agricoles, 2020). Les fermes d’élevage représentent environ 42% de ce nombre (Statistique Canada, 2021), étant majoritairement des fermes d’élevage bovin, avec 7 637 exploitations, ou d’élevage de porcs, avec 1 463 exploitations (Statistique Canada, 2021). Au niveau des fermes de cultures, les exploitations de sirop d’érable, de culture du foin, de culture du maïs, de culture de fruits et de noix figurent parmi les types d’exploitations agricoles les plus importantes au Québec (Statistique Canada, 2021). Ce secteur d’activité est confronté à nombreux défis liés à l’énergie et aux matières résiduelles.

Selon l’UPA, les fermes agricoles sont généralement mal desservies par le réseau électrique. Souvent situées en milieu rural, les exploitations agricoles ont difficilement accès au réseau électrique triphasé, considéré comme étant un élément clé du secteur (UPA, 2019). Le courant triphasé permet notamment d’avoir une tension trois fois plus élevée qu’un réseau conventionnel monophasé, il est utilisé dans le secteur industriel pour alimenter la machinerie demandant un apport énergétique plus élevé (Régie de l’énergie, 2002). Dans le cas des exploitations agricoles, l’accès au réseau triphasé permettrait de remplacer certains équipements par des outils plus efficaces afin de rehausser la compétitivité des fermes québécoises (UPA, 2019).

Le secteur agricole dépend également de produits issus des hydrocarbures tels que le propane, représentant environ 15% de la consommation énergétique totale des exploitations dans la province (Radio-Canada, 2019). Il est utilisé notamment pour sécher les récoltes de grains avant de les entreposer, pour alimenter de la machinerie et pour le chauffage de bâtiments (Radio-Canada, 2019). La pénurie qui a frappé le Québec en novembre 2019 a suscité de grandes inquiétudes auprès des producteurs agricoles qui envisageaient les conséquences désastreuses d’un manque d’approvisionnement à long terme (Radio-Canada, 2019).
Comme mentionné précédemment, la production animale représente la majorité des recettes du secteur agricole au Québec. L’élevage s’effectue dans le but d’obtenir des produits animaux tels que la viande et les produits laitiers. Toutefois, cette pratique s’accompagne également d’un produit moins désirable : le fumier. Selon les données recensées par Statistique Canada, une vache laitière produirait environ 62 kg de fumier chaque jour (Statistique Canada, 2006), représentant une grande proportion des matières résiduelles produites sur ferme. En effet, l’industrie laitière et porcine génère à eux seuls environ 17,5 millions de tonnes de fumier par année au Québec (Armstrong, V., 2017). La gestion du fumier est ainsi un problème de taille pour les fermes agricoles qui entraîne des coûts. L’épandage est la pratique la plus communément utilisée comme méthode de « réemploi » de cette matière résiduelle fertilisante, puisqu’elle est simple, efficace et économique (Recyc-Québec, 2018). Toutefois, cette technique est contestée par des groupes environnementaux : le stockage et l’épandage du fumier utilisent une énorme quantité d’eau, elles comportent des risques de prolifération de polluants contenus dans le fumier vers les nappes phréatiques et les cours d’eau (Armstrong, V., 2017) et entraînent l’émanation de gaz dangereux telles que le sulfure d’hydrogène (H₂S), l’ammoniac (NH₃), le dioxyde d’azote (NO₂) ainsi que le méthane (CH₄) et le dioxyde de carbone (CO₂), contribuant aux émissions de gaz à effet de serre (Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), 2013).

Le traitement des matières résiduelles organiques par biométhanisation est une solution qui pourrait contribuer à résoudre plusieurs de ces problèmes qu’on retrouve communément dans le secteur agricole. En effet, la méthanisation est un processus de décomposition des matières organiques par des bactéries en absence d’oxygène. C’est un processus naturel effectué par des microorganismes d’origine multiple présents dans différents environnements (Amarante, J., 2010). Ce phénomène se manifeste partout dans la nature où il y a de la matière organique et une quantité insuffisante d’oxygène, notamment dans les marais, les rizières et dans certains systèmes digestifs de mammifères tels que celui de la vache (Amarante, J., 2010).

Un procédé de biométhanisation reproduit un environnement propice à la méthanisation des matières résiduelles organiques, cette dégradation permet l’obtention de trois produits distincts : le biogaz, le digestat (fertilisant solide) et l’éluat (fertilisant liquide). En effet, la biométhanisation permet de capter le méthane provenant de la décomposition naturelle des aliments, ce gaz aurait un potentiel de réchauffement planétaire 28 fois plus élevé que le dioxyde de carbone sur 100 ans.
De plus, contrairement au compostage, la biométhanisation neutralise certains composés organiques volatils présents dans le substrat qui sont nocifs pour l’environnement (Morin et coll., 2010). Le biogaz produit par la digestion anaérobie a plusieurs débouchés potentiels, tels que la production de chaleur, d’électricité et de chaleur avec un moteur cogénération, et il peut également être purifié pour substituer le gaz naturel dans toutes ses applications.

La biométhanisation représente ainsi un élément de solution à la problématique de l’incertitude en approvisionnement d’énergie pour les fermes. Elle permet aux exploitations de valoriser le fumier en trois produits distincts commercialisables, tout en contribuant aux efforts de transition. Toutefois, la mise en place d’un procédé biométhanisation requière un investissement en capital bien plus élevé que les autres méthodes d’élimination des matières résiduelles organiques.

Au Canada, on recensait en 2018 61 installations de digestion anaérobie dans le secteur agricole et agroalimentaire (Canadian Biogas Association, 2018), 45 de ces systèmes se retrouvent sur des fermes agricoles, et il y a également au moins 5 installations en planification, en construction ou en mise en service (Canadian Biogas Association, 2021). Lorsqu’on observe la répartition des installations de biogaz au Canada, il est possible de constater que la majorité des projets de biométhanisation sont établis dans la province ontarienne, comptabilisant 64% des installations dans le secteur agricole (Canadian Biogas Association, 2018).

L’objectif de cette recherche est de mieux comprendre la problématique économique et de diffusion de la biométhanisation agricole. Plus précisément, cette recherche vise à répondre aux trois questions suivantes :

- Quelles sont les technologies de digestion anaérobie disponible pour les projets de biométhanisation en milieu agricole au Canada?
- Comment expliquer la forte intégration des procédés de digestion anaérobie dans le secteur agricole en Ontario comparativement au Québec?
- Est-ce qu’un projet de biométhanisation peut être rentable pour une ferme typique du Québec?

Afin de répondre à ces interrogations, il sera question, dans un premier temps, d’élaborer une revue de littérature sur les technologies de digestion anaérobie disponible au Canada et, dans un
deuxième temps, de présenter l’approche réglementaire et les incitatifs économiques présents en Ontario et au Québec afin de mettre en lumière les différences entre les approches des deux provinces. Finalement, une analyse économique sera effectuée avec un cas typique de ferme québécoise afin de chiffrer les retombées potentielles reliées à ce type de projet.

Section 1 : Revue de la littérature actuelle sur les procédés anaérobies

Les technologies de biométhanisation se distinguent principalement selon trois caractéristiques : la siccité de la matière (niveau d’humidité), la température de la digestion et le fonctionnement des réacteurs. Outre ces trois caractéristiques, le choix d’une technologie de digestion anaérobie peut également être influencé par le type de matière pouvant être traité, la forme de brassage, la capacité de traitement et les systèmes auxiliaires disponibles (système d’alimentation solide, prétraitement des matières organiques, traitements des fertilisants, etc.).

Classification des procédés

La siccité de la matière : se réfère à la teneur en matière sèche du substrat (Amarante, J., 2010). Il existe ainsi deux types de procédés selon cette caractéristique.

- **À voie sèche** : Teneur en matière sèche entre 20 et 50%. Ce procédé peut utiliser des digesteurs de plus petite taille due au fait qu’il nécessite moins d’ajouts d’eau. De plus, les besoins en chauffage sont moins élevés.
- **À voie humide** : matière sèche inférieure à 15% du volume total, ce procédé est utilisé principalement pour les intrants liquides sans quoi il faut diluer les résidus solides. Le besoin de cuves de grandes tailles augmente les coûts des digesteurs et de chauffage.

La température de la digestion : Certaines plages de températures doivent être maintenues de manière constante tout au long du procédé anaérobie en fonction du procédé retenu. Il existe trois plages de températures pour la digestion anaérobie (Amarante, J., 2010).

- **Mode psychrophile** : Température inférieure à 15 °C. Les coûts reliés à la méthanisation sont faibles tout comme la production du biogaz, les temps de séjour étant également élevés. Ce type de procédé s’adapte bien aux conditions climatiques plus froides grâce à la grande tolérance aux variations de température des microorganismes présents lors de la
digestion. De plus, une fraction plus faible de l’énergie produite est nécessaire pour le fonctionnement de ce type de technologie.

- **Mode mésophile** : Température maintenue entre 30 et 40 °C. Ce mode permet une bonne production de biogaz et les microorganismes détiennent une tolérance considérable aux variations de température. Ainsi, ce mode est également attrayant pour les projets dans des zones climatiques plus froides telles qu’au Québec.

- **Mode thermophile** : Température maintenue entre 50 et 65°C. Ce mode améliore la vitesse du procédé et la chaleur élevée est efficace pour détruire les pathogènes présents dans les matières organiques résiduelles. Toutefois, ce mode est plus sensible aux fluctuations de températures et requiert un apport en énergie plus élevé.

- **Mode continu** : Les digesteurs sont alimentés de manière constante, avec un flux d’intrant et d’extrait égal afin d’obtenir une production de méthane constante.

- **Mode par lot** : Les digesteurs sont remplis puis vidés à la fin de la digestion. Le niveau de production de méthane suit une courbe en forme de cloche. On procède à l’évacuation de la matière lorsque la production de méthane est quasi nulle.

Origine des matières : Pour des raisons techniques liées à la conception de la technologie, certains déchets organiques ne sont pas compatibles avec certaines technologies. Il est important de connaître l’origine des matières à traiter afin de sélectionner une technologie appropriée.

Forme de brassage : Le brassage des matières organiques lors de la digestion anaérobie est parfois nécessaire selon le type de technologie employé. Le brassage des résidus peut exiger des composantes mécaniques additionnelles et un apport en énergie plus élevé. Le brassage des déchets organiques possède certains avantages, comme l’homogénéisation du substrat pouvant améliorer la stabilité du procédé et la production de biogaz, mais a aussi son lot d’inconvénients, tels que les entretiens et les bris mécaniques reliés au stress appliqué au mécanisme de brassage, ainsi qu’une taille limitée des digesteurs tout dépendants la forme de brassage.
Capacité de traitement : Le coût d’investissement en capital pour un système de digestion anaérobie est principalement influencé par la capacité de traitement des matières organiques. Lors de la sélection de la technologie employée, le procédé anaérobie retenue doit être en mesure d’opérer à sa capacité optimale afin d’assurer la rentabilité du projet.

Systèmes auxiliaires : L’addition de systèmes auxiliaires à un procédé de biométhanisation peut s’avérer nécessaire en fonction du contexte de la ferme et de la réglementation en vigueur, ce qui peut complexifier l’opération du processus, mais également apporter de la valeur additionnelle à celui-ci.

Valorisation du biogaz

Au cours des dernières années, le secteur du biogaz a connu une croissance rapide de la recherche et du développement en ce qui a trait la valorisation du biogaz (Kapoor, R. & col., 2020). La figure suivante présente un résumé des différentes avenues de valorisation présentement disponible.

Figure 1 : schéma des voies d’utilisation du biogaz, du biométhane et du bio-CO2.

Source : Kapoor, R. & col., 2020
Au Canada, c’est environ 50% des installations de digestion anaérobie qui produisent de l’électricité à partir du biogaz dans le but de le vendre entant qu’énergie de source renouvelable sur le réseau électrique (Canadian Biogas Association, 2021). Les autres installations utilisent le biogaz directement pour répondre à leurs besoins énergétiques en chaleur et en électricité, il existe seulement deux projets de biométhanisation destinés à la production de gaz naturel renouvelable (GNR) dans le secteur agricole et agroalimentaire (Canadian Biogas Association, 2018).

Production d’électricité avec la cogénération

La production d’énergie avec le biogaz s’effectue par l’entremise d’installations de cogénération chauffage-électricité. Les moteurs cogénération sont des systèmes très efficents fonctionnant généralement avec une efficacité globale (électricité et chaleur) de 65% à 85%, avec un rendement électrique d’environ 25 à 45%, en fonction de la technologie et du carburant utilisé (U.S. department of energy, 2017). La chaleur récupérée peut être utilisée dans plusieurs activités agricoles telles que le séchage de fourrage et le chauffage de bâtiments d’élevage (ADEME, 2019). La majorité de la production d’électricité est vendue au réseau électrique, les exploitations agricoles se réservent généralement une petite portion de l’énergie produite afin de répondre à leurs besoins énergétiques (Canadian Biogas Association, 2018). L’électricité issue de la cogénération est de source renouvelable, certains services publics en approvisionnement énergétique tel qu’en Ontario offrent des tarifs d’achat avantageux et des contrats d’approvisionnement à long terme pour la vente d’électricité renouvelable sur le réseau (OMAFRA, 2021), ce qui représente une source de revenue additionnel pour les fermes en plus de réduire les coûts d’approvisionnement en énergie.

Transformation en gaz naturel renouvelable pour injection

Afin d’élargir le champ d’utilisation du biogaz, la purification ou la conversion du biogaz devient un procédé essentiel. Ce processus consiste essentiellement à éliminer la présence de dioxyde de carbone dans le biogaz afin d’obtenir une concentration de méthane (CH4) au-delà de 90%, ce qui rend le biogaz équivalent au gaz naturel et peut le substituer dans toutes ses applications (Kapoor, R. & col., 2020). Il existe diverses technologies de purification du biogaz, telles que l’absorption, la cryogénie, la séparation membranaire et les approches biologiques (Kapoor, R. & col., 2020).
Ainsi, le biométhane et le bio-dioxyde de carbone produit lors de la purification du biogaz peuvent être utilisés dans les véhicules, injectés dans le réseau de gaz naturel comme GNR et pour la fumigation des céréales (Kapoor, R. & col., 2020). Au Québec, l’entreprise Énergir souhaite encourager le développement de la filière de gaz naturel renouvelable dans la province, notamment avec l’introduction de tarif d’achat avantageux et des contrats d’approvisionnement à long terme (Canadian Biogas Association, 2018). Ce type de valorisation requiert généralement un niveau d’investissement plus élevé que la cogénération et complexifie l’opération du procédé.

Présentation des procédés de digestion anaérobie

Cette section présente 15 technologies développées par des firmes internationales pour la biométhanisation agricole. Un résumé de ces technologies est présenté à la figure 15, à la suite des présentations.

BEKON

BEKON est une technologie fabriquée par l’entreprise allemande BEKON Energy Technologies. Ce type de digesteur peut accueillir plusieurs types de substrats : déchets de jardin, résidus agricoles ou forestiers, du fumier ou encore des déchets ménagers. BEKON est un procédé à voie sèche avec un volume du digesteur plus petit que ses compétiteurs pour la même capacité de traitement, cette technologie demande ainsi un niveau d’investissement plus faible en immobilisation. La capacité de matière organique pouvant être traitée annuellement varie entre 3 000 et 150 000 tonnes (BEKON, 2015).

Figure 2 : schéma du procédé BEKON
Cette technologie fonctionne en mode par lot, signifiant que le digesteur est rempli au début du procédé, puis il reste fermé jusqu’au bout du processus de biométhanisation. Par la suite, il est vidé avant l’insertion d’un nouveau lot de matière organique. Pour ce procédé, aucun prétraitement n’est nécessaire, les matières organiques sont inoculées en les mélangeant avec du digestat afin d’accélérer le processus de digestion et d’augmenter la production de biogaz. Le mélange doit avoir une siccité jusqu’à 50% avant d’être introduit dans le système. Fabriqué principalement avec du béton, le digesteur BEKON prend la forme d’un garage doté de portes de grande superficie. Ce design facilite le maniement des matières organiques, effectué préférentiellement avec une chargeuse à roues. Ce procédé fonctionne à une température dans le plateau mésophile (entre 34 et 37°C), il ne requiert aucun brassage des matières, la recirculation du lixiviat sur le substrat après être réchauffé vient stimuler le processus de digestion (BEKON, 2015). Après un temps de séjour d’environ 3 à 4 semaines, le digesteur doit être ventilé avant d’y retirer le digestat, ce dernier pouvant être composté afin d’obtenir un fertilisant commercialisable. Le biogaz est entreposé à même le digesteur jusqu’à sa valorisation.

Andion

Andion est une entreprise originaire d’Italie qui se spécialise dans le traitement des eaux usées et la valorisation énergétique des matières résiduelles. La technologie de digestion anaérobie développée par l’organisation permet le traitement d’une vaste gamme de matières organiques. Ce procédé se démarque d’ailleurs avec son système de déconditionnement des intrants en amont permettant le désemballage des biodéchets, notamment issus de la grande distribution alimentaire, et le retrait des matières inertes indésirables pouvant contaminer le substrat (Andion, 2021). Andion offre également la possibilité d’intégrer un système de contrôle des odeurs par biofiltration pour toutes les installations nécessaires au procédé, ce qui représente un attrait intéressant pour les projets près des centres urbains. Cette technologie est ainsi plus intéressante pour les projets à grande échelle visant le traitement de matières résiduelles de plusieurs origines.
Figure 3 : schéma du procédé Andion

Le procédé Andion dispose d’un bâtiment de réception à l’arrivée des matières résiduelles, ces dernières sont premièremenent déposées dans le système de déconditionnement, faisant le triage et la préparation des matières à la digestion. Ensuite, le substrat se dirige dans un réservoir tampon où l’on effectue un second triage des matières afin de retirer toute présence de sédiments ou de matières inertes indésirables (Andion, 2021). Le système d’alimentation intégré dans le réservoir permet l’acheminement des matières dans le digesteur fonctionnant en mode continu. Lors du temps de séjour, les matières sont continuellement remuées grâce à un système de brassage à la verticale, toute maintenance reliée au digesteur s’effectue à l’extérieur de la cuve. Par suite de la digestion, le digestat se dirige dans un séparateur solide-liquide. La fraction liquide est envoyée dans un système de traitement des eaux usées intégré, une portion de l’eau traitée est recyclée dans le procédé tandis que l’excédent peut être réintroduit dans les cours d’eau (Andion, 2021). La fraction solide est compostée pour fournir une haute qualité de fertilisant pouvant être utilisé par l’industrie agricole biologique. Le biogaz peut être valorisé comme carburant servant à faire fonctionner un moteur cogénération ou encore par injection dans le réseau de gaz naturel après purification.
Microferm – Bright biométhane

Le digesteur Microferm est une technologie conçue spécifiquement pour la digestion anaérobie chez les agriculteurs générant du fumier bovin. Fabriqué par l’organisation HoSt bio-energy installations situées aux Pays-Bas, le digesteur Microferm est un procédé optimal pour les entreprises ayant une production de fumier annuelle entre 400 et 14 000m³ (HoSt, 2020), ou 160 à 5 600 tonnes de fumier après conversion (U.S. environmental protection agency, 2006). Bright Biomethane s’occupe de la distribution de cette technologie au Canada.

Cette technologie opère de manière continue, le digesteur est alimenté principalement par un système de raclage des boues installé dans les enclos. Le digesteur ressemble à un silo dans lequel le fumier, à faible siccité, est maintenu à une température dans le spectre mésophile à 40 degrés Celsius tout au long du procédé (HoSt, 2020). Grâce à l’isolation complète du silo et au toit double membrane brevetée, les centrales Microferm ont une faible consommation de chaleur qui garantit des pertes de chaleur minimales même en hiver. À la suite du procédé anaérobie, le biogaz est entreposé dans une grande cuve prenant la forme d’un dôme tandis que le digestat est acheminé dans un bassin dans le but de l’entreposer jusqu’à l’épandage.
CCI Bio Energy

Figure 5 : schéma du procédé CCI Bioenergy

Le digesteur et le réservoir de biogaz sont fabriqués avec plusieurs couches de membranes flexibles et légères renforcées par un cadre « exosquelette » en métal. Au niveau du fonctionnement, les matières résiduelles sont acheminées dans un broyeur pour ensuite se diriger vers le digesteur où le procédé anaérobie se produit avec un temps de rétention de 20 à 35 jours. Le brassage de la matière s’effectue par l’entremise du broyeur en faisant recirculer le substrat au travers de celui-ci. Le biogaz est entreposé à même le digesteur avant sa valorisation (CCI Bioenergy, 2018). L’organisation offre plusieurs avenues de valorisation du biogaz : alimentation d’un moteur cogénération, purification pour injection dans le réseau gazier et conversion en biocarburants.
Muckbuster / Flexibuster

Élaboré par l’entreprise d’Angleterre SEaB energy, la technologie Muckbuster, conçue pour les fermes et le secteur rural, ainsi que le Flexibuster, développé pour le secteur des produits alimentaires et des boissons, sont tous deux des procédés anaérobies modulaires fabriqués dans une série de conteneurs afin de faciliter le transport, l’installation et l’utilisation du système. Les systèmes de digestion anaérobie de SEaB ont une capacité annuelle entre 180 et 1 100 tonnes de matière résiduelle organique, ils peuvent traiter des déchets alimentaires animal et végétal, des boues et du fumier (SEaB Energy, 2018).

Figure 6 : schéma du procédé Muckbuster / Flexibuster

Les technologies Muckbuster et Flexibuster regroupent entre 3 à 7 conteneurs de 20 pieds : un premier conteneur est utilisé comme unité de commande tandis que le second sert de réservoir pour le biogaz. Les autres conteneurs sont employés comme digesteurs variant en nombre selon le type et la quantité de déchets organiques à traiter. Les systèmes de SEaB energy sont des procédés à voie sèche qui fonctionnent en mode continue et leur fonctionnement est automatisé. Après avoir inséré les matières résiduelles dans la cuve, le système automatisé contrôle le flux des matières vers le réservoir tampon, où elles attendent d’être acheminées au digesteur pour être traité. Le biogaz se dirige ensuite vers le conteneur réservoir pour alimenter un moteur cogénération qui produit chaleur et énergie, tandis que le digestat peut être récupéré comme fertilisant (SEaB Energy, 2018).
CH4 Biogas

Figure 7 : schéma du procédé CH4 Biogas

En premier lieu, les matières organiques et le fumier sont acheminés dans une cuve pour mélanger les substances avant de procéder à un prétraitement par pasteurisation, consistant à maintenir le substrat à une température de 70°C pendant un court laps de temps dans le but d’éliminer certains agents pathogènes contenus dans la matière (Encyclopedia Britannica, 2021)

Ensuite, le substrat se dirige vers le digesteur anaérobie dans lequel il est maintenu à une température mésophile (38°C) ou thermophile (50°C) pendant deux à trois semaines. Après la
digestion, le digestat est entreposé en attendant d’être utilisé comme engrais aux cultures tandis que le biogaz produit est filtré en vue de sa valorisation (Bigadan A/S, 2020).

CH Four Biogas

Originaire d’Ontario, CHFour biogas offre des solutions de biométhanisation personnalisée aux besoins de ses clients dans le secteur municipal, industriel et agricultural. Les procédés de biométhanisation se basent sur plus de 20 ans d’expertise dans le biogaz développé en Suisse. Les technologies offertes peuvent traiter une multitude de matières telles que le fumier, les déchets de fabrication digestibles, les déchets alimentaires, etc. Ce procédé de digestion anaérobie effectue le traitement des matières à température mésophile, les étapes du processus s’adaptent en fonction des matières traitées, notamment au niveau des étapes de prétraitement et de la digestion (CHFour Biogas, 2020). Le biogaz produit peut servir à alimenter un moteur cogénération ou encore être purifié pour injection dans le réseau de gaz naturel. Pour sa part, le digestat peut être utilisé comme fertilisant ou encore comme litière pour les animaux après une séparation de la fraction solide du lisier (CHFour Biogas, 2020).

Figure 8 : schéma des avenues possibles de valorisation
Agrikomp
Agrikomp est une entreprise allemande spécialisée dans la conception de systèmes de digestion anaérobie depuis plus de 25 ans, comptabilisant plus de 950 installations à l’échelle mondiale dont deux au Canada. La technologie agriSelect s’avère particulièrement intéressante pour le secteur agricole, le système est conçu principalement pour le traitement du lisier, mais elle peut également traiter du fumier solide et des résidus de culture avec l’addition d’un système d’alimentation et d’agitateur à palmes dans le digesteur (Agrikomp, 2021). Toutefois, afin de respecter les temps de séjour, le substrat ne doit pas dépasser un taux de matière sèche de 20%.

Figure 9 : schéma du procédé développé par Agrikomp

Premièrement, la fraction solide du substrat est déposée dans le système d’alimentation afin d’être broyée avant son entrée dans le digesteur tandis que la fraction liquide n’a pas besoin de prétraitement. Lors de la digestion, le substrat est continuellement remué grâce au système d’agitateur à palmes. Le biogaz est ensuite entreposé avant son utilisation pour alimenter un moteur cogénération tandis que le digestat est séparé en une fraction solide et liquide destinée à être utilisée comme fertilisant. L’organisation offre également une solution de traitement du fertilisant liquide afin de réduire son volume et sa concentration en azote avec un procédé d’évaporation en combinaison avec l’osmose inverse (Agrikomp, 2021). L’azote récupéré peut être transformé en une solution d’ammoniac communément utilisé dans l’industrie chimique (Agrikomp, 2021). Cette technologie pourrait contribuer à résoudre un enjeu important dans le secteur agricole : la concentration élevée de nutriments dans les sols et les sources d’eaux (U.S. Geological Survey (USGS), 2020).
DLS Biogas
DLS biogas est spécialisé dans la confection de systèmes de biométhanisation destinée au secteur agricole, notamment pour les ferme laitières. Avec plus de 15 ans d’expérience, l’entreprise ontarienne a développé plusieurs technologies permettant de faciliter l’opération du système de digestion anaérobie, tel qu’un système d’alimentation pour les matières solides, un système de pasteurisation pour les matières hors fermes à faible siccité, un brûleur à gaz résiduaire pour éviter les émissions fugitives de méthane et un conteneur mécanique regroupant tous les systèmes mécaniques nécessaires lors de la biométhanisation pour faciliter l’accès, le « monitoring » et l’entretien (DLS biogas, 2021). DLS biogas se démarque d’ailleurs grâce à son système de recirculation des matières avec des buses situées au-dessus du niveau des liquides permettant d’arroser le substrat continuellement. Ce système de brassage permet d’augmenter la capacité de traitement et le temps de rétention des digesteurs, ainsi que de réduire les temps d’arrêt occasionner par l’entretient du système d’agitation, puisque les buses peuvent être retirées à partir de l’extérieur du digesteur (DLS biogas, 2021).

Figure 10 : Photo d’une installation de DLS Biogas

Avant d’être introduites dans le digesteur, les matières humides hors fermes doivent être pasteurisées tandis que les matières solides sont broyées dans le système d’alimentation solide. Par la suite, elles sont acheminées dans le digesteur dans lequel elles séjournent avec une recirculation constante. Après la digestion, le biogaz produit se dirige dans une cuve pendant la période de désulfuration et pour son entreposage jusqu’à son utilisation pour l’alimentation d’un moteur cogénération. L’entreprise est affiliée avec Elektro Hagl, une entreprise allemande qui fournit les unités de cogénération (DLS biogas, 2021). Finalement, le digestat peut être séparé en une fraction liquide et solide pour être utilisé en tant qu’engrais à la ferme.
Bio-En Power inc.

Figure 11 : Photo d’une installation de Bio-En Power

Bio-En Power et son partenaire d’Autriche Agrinz Technologies GmbH ne fournissent aucune information technique concernant les technologies de digestion anaérobie offertes, mis à part que leur procédé s’effectue en mode continue et qu’il peut traiter une grande variété de matières organiques (Agrinz GmbH Technologies, 2021).
Bio-Terre systems
Originaire de Sherbrooke, Bio-Terre Systems développe des technologies de digestion anaérobie adaptées aux matières organiques issues du secteur agricole et agroalimentaire. Le procédé développé se démarque notamment par la température de séjour utiliser dans le digesteur qui se situe dans le spectre psychrophile entre 15°C et 25°C (Bio-Terre Systems Inc., 2021). Ce type de procédé permet de réduire les coûts opérationnels en réduisant la quantité d’énergie utiliser lors de l’étape de digestion et d’augmenter la stabilité du processus, puisque le système est moins sensible aux variations de température que les procédés à plus haute température. Toutefois, la technologie de Bio-Terre Systems nécessite l’acquisition d’un digesteur de plus grande taille que les technologies de biométhanisation conventionnelles.

Figure 12 : Schéma de valorisation

Ce système de biométhanisation ne requiert aucun prétraitement des matières, celles-ci sont entreposées et ensuite acheminées vers le digesteur lorsque le volume est assez élevé pour le remplir. Étant un procédé par lot, il faut attendre à la fin du temps de séjour avant d’insérer de nouvelles matières organiques résiduelles. Le digesteur dispose d’un système d’agitation minimaliste, permettant de réduire les coûts d’entretien lié aux bris d’équipement mécanique. Ensuite, le digestat est entreposé dans une cuve où l’on réduit la teneur en phosphore du fumier traité tandis que le biogaz est entreposé en vue de sa valorisation. La technologie de digestion anaérobie développée par Bio-Terre Systems vise à réduire les coûts reliés à l’acquisition d’équipement, au fonctionnement et à l’entretien de ce type de système, la simplicité de ce procédé facilite son opération sans avoir à recourir à des spécialistes (Bio-Terre Systems Inc., 2021).
Electrigaz

Figure 13 : Schéma général du processus de biométhanisation agricole

Au début du procédé, les matières à traiter sont déposées dans une fosse de réception, les matières solides doivent être diluées avec de l’eau issue du procédé avant de se diriger vers le réservoir tampon, qui entrepose le substrat et alimente le digesteur de manière continue. Le système d’agitation intégré dans le digesteur assure l’homogénéité du substrat et améliore la production de biogaz. Après le temps de séjour prescrit, le digestat se dirige vers un second digesteur muni d’un réservoir. Le biogaz y est ainsi entreposé jusqu’à son utilisation comme carburant pour un moteur cogénération qui fournit la ferme en chaleur et électricité. Le digestat est ensuite séparé en une fraction solide, pouvant être utilisé comme engrais, et une fraction liquide, qui est recyclée dans le procédé pour diluer les matières organiques solides dans la fosse de réception (Krieg & Fischer Ingenieure GmbH, 2019).
PlanET Biogas Solutions

Figure 13 : Schéma du procédé de PlanET

Premièrement, les matières organiques sont déposées dans une fosse de réception, celles-ci doivent passer par un système d’alimentation qui broie et mélange les résidus de manière homogène avant d’être introduit dans le digesteur. Lors du temps de séjour, le substrat est mélangé continuellement afin d’assurer son homogénéité et d’optimiser la production de biogaz. À la suite de la digestion, le digestat est entreposé dans une cuve en attendant son utilisation comme fertilisant, le biogaz est entreposé à même le digesteur. PlanET offre deux options de valorisation du biogaz : un système de purification pour injection dans le réseau de gazier ou production d’électricité et de chaleur grâce à un moteur cogénération (PlanET Biogas, 2021).
BIOFerm
Originaire du Wisconsin, BIOFerm possède une expertise dans les procédés de digestion anaérobie et de purification du biogaz, l’organisation fournit une gamme complète de technologies de biométhanisation au marché nord-américain pouvant traiter différents types et quantités de matières résiduelles organiques (Bioferm Energy Systems, 2021). La technologie COCCUS est particulièremenent intéressante pour le secteur agricole, ce procédé fonctionne avec des matières à faible siccité telles que le fumier et les lisiers. Avec une capacité de traitement pouvant aller jusqu’à 7 000 tonnes annuellement, ce procédé peut également être jumelé à la technologie EUCO pour le traitement de matières organiques solides, qui liquéfie et hydrolyse les déchets solides avant qu’ils soient introduits dans le digesteur.

Figure 14 : Schéma d’une installation technologique COCCUS

Ce procédé ne requiert aucun prétraitement du substrat avant la digestion, celui-ci est introduit directement dans le digesteur via le système d’alimentation. La digestion s’effectue en mode continue et à température mésophile, le substrat étant constamment remué grâce aux agitateurs à palme de grande superficie. Le biogaz est entreposé dans la partie supérieure du digesteur, dans lequel se trouvent des granules de charbons actifs imprégnés d'iode de potassium pour la désulfuration du gaz (Bioferm Energy Systems, 2021). Le conteneur adjacent au digesteur regroupe tous les systèmes mécaniques nécessaires au fonctionnement du procédé et à son monitorage. En ce qui a trait la valorisation du biogaz, BIOFerm offre une technologie de purification pour l’injection ou un moteur cogénération pour la production d’énergie locale.
Biolectric
Biolectric est une entreprise belge qui se spécialise dans la confection de procédé anaérobie sur ferme destiné au traitement de fumier bovin. Avec plus de 10 ans d’expérience et des installations dans plus de 10 pays, cette entreprise a développé une expertise dans la production d’énergie renouvelable de manière abordable, et ce, même à petite échelle (Biolectric, 2020).

Figure 14 : Schéma du procédé de Bioelectric

Le système de digestion anaérobie de Biolectric est relativement simple, composé d’un conteneur regroupant les composantes mécaniques, le moteur cogénération et les systèmes de monitorage, ainsi qu’un digesteur adjacent au conteneur, le réservoir pour entreposer le biogaz se situe à même le digesteur. Ce système est conçu spécifiquement pour le traitement du fumier et des lisiers bovin, n’ayant ainsi pas besoin de système d’alimentation auxiliaire pour les matières solides. Le fumier n’a pas besoin de prétraitement avant d’être introduit dans le digesteur, la digestion s’effectue à température mésophile entre 39 et 42 degrés Celsius, et ce, de manière continue (Biolectric, 2020). La taille du digesteur peut être ajustée en fonction de la quantité de fumier produite sur la ferme, elle doit toutefois être en mesure d’en produire un minimum de 1500 m3 par année afin que le procédé soit rentable (Biolectric, 2020), ce qui représente environ 600 tonnes de fumier après conversion (U.S. environmental protection agency, 2006).
Terix Envirogaz
Située à Lévis, cette société québécoise est un chef de file nord-américain dans la fourniture d’équipements et de services d’ingénierie pour la conception de systèmes de digestion anaérobie et de raffinage de biogaz (Terix Envirogaz, 2021). D’ailleurs, Terix Envirogaz est la société ayant été retenue pour la construction de l’usine de biométhanisation à Rivière-du-Loup.

L’organisation a développé le procédé de biométhanisation Termix consistant en une approche innovante en trois étapes. Selon Terix Envirogaz, ce processus permettrait de produire entre 15 et 30% de biogaz de plus qu’un procédé de digestion anaérobie « classique », d’accueillir une grande variété d’intrants, et ce, avec un temps de rétention relativement court, situé entre 10 et 15 jours (Terix Envirogaz, 2021).

Les deux premières étapes de la digestion s’effectuent à température thermophile, permettant ainsi de garantir l’élimination des agents pathogènes tout en assurant une qualité supérieure du digestat à la fin du procédé, celui-ci étant prêt à l’épandage directement après la digestion. La dernière étape de la digestion s’effectue dans une cuve à température mésophile, permettant d’assurer la digestion complète du substrat et de maximiser la production de biogaz (Terix Envirogaz, 2021).
La figure suivante présente un résumé des technologies recensées dans cette revue de littérature, présentant les avantages et les inconvénients associés à chacun des procédés.

Figure 15 : Résumé des technologies

<table>
<thead>
<tr>
<th>Température de digestion</th>
<th>Fonctionnement des réacteurs</th>
<th>Siccité des matières</th>
<th>Avantages</th>
<th>Inconvénients</th>
</tr>
</thead>
</table>
| BEKON | Mésophile | Par lot | Voie sèche | - Coût d'investissement faible
- Système compact
- Aucun prétraitement
- Faible utilisation d'eau
- Minimisation de la maintenance
- Ne fonctionne pas avec des matières à faible siccité
- Aucune gestion des nutriments ou des agents pathogènes |
| Andion | N/A | Continue | Voie humide | - Coût initial élevé
- Proceso optimal/uniquement avec l'importation de matières
- Occupe un grand espace
- Proceso complexe |
| Microferm | Mésophile | Continue | Voie humide | - Système très versatil pour traiter des matières diverses
- Idéal pour les projets à grande échelle
- Facile à transporter
- Aucune gestion des nutriments ou des agents pathogènes |
| CCI Bio Energy | Mésophile | Continue | N/A | - Large gamme de matières organiques acceptées
- Système compact
- Proceso flexible, modulaire
- Capacité de traitement limitée
- Systèmes auxiliaires limités
- Aucune gestion des nutriments ou des agents pathogènes |
| Muckbaster / Flexibuster | N/A | Continue | Voie sèche ou humide | - Proceso révolutionnaire facile à transporter
- Occupe peu d'espace
- Faible espace de traitement
- Peu de flexibilité au niveau de la valorisation du biogaz
- Aucune gestion des nutriments ou des agents pathogènes |
| CH4 Biogas | Mésophile ou thermophile | Continue | Voie humide | - Flexibilité d'opération et d'entretien
- Capacité de traitement élevé du digesteur
- Gestion des agents pathogènes
- Peu d'informations technique fournies par l'organisation
- Certaines subventions de l'électricité |
| CH Four Biogas | Mésophile | Continue | N/A | - Flexibilité du procédé
- Gestion des nutriments dans le sol et les cours d'eau
- Génération des matières organiques
- Gestion des nutriments
- Aucune gestion des matières organiques |
| Agrikomp | Mésophile ou thermophile | Continue | Voie humide | - Gestion des nutriments dans le sol et les cours d'eau
- Génération des matières organiques
- Gestion des agents pathogènes
- Proceso complexe
- Coût initial élevé
- Occupe un grand espace |
| DLS Biogas | Mésophile | Continue | Voie humide | - Flexibilité du procédé
- Gestion des agents pathogènes
- Peu d'informations technique fournies par l'organisation
- Aucune gestion des nutriments ou des agents pathogènes |
| Bio-En Power inc. | Mésophile ou thermophile | Continue | N/A | - Proceso flexible
- Gestion des nutriments
- Gestion des agents pathogènes
- Peu d'informations technique fournies par l'organisation
- Aucune gestion des nutriments ou des agents pathogènes |
| Bio-Terre Systems | Psychrophile | Par lot | Voie humide | - Flexibilité du procédé
- Gestion des agents pathogènes
- Biodigesteur de plus grande taille
- Production de biogaz faible
- Coût initial élevé
- Occupe un grand espace |
| Électricaz | Mésophile ou thermophile | Continue | Voie humide | - Flexibilité du procédé
- Gestion des agents pathogènes
- Recyclage de l'eau utilisée pour le procédé
- Aucune gestion des nutriments ou des agents pathogènes
- Proceso complexe
- Coût initial élevé
- Occupe un grand espace |
| PlanET Biogas Solutions | Mésophile ou thermophile | Continue | Voie humide | - Flexibilité du procédé
- Gestion des agents pathogènes
- Aucune gestion des nutriments ou des agents pathogènes
- Proceso complexe
- Coût initial élevé
- Occupe un grand espace |
| B1OFeins | Mésophile | Continue | Voie humide | - Flexibilité du procédé
- Gestion des agents pathogènes
- Aucune gestion des nutriments ou des agents pathogènes
- Proceso complexe
- Coût initial élevé
- Occupe un grand espace |
| Biolimbic | Mésophile | Continue | Voie humide | - Flexibilité du procédé
- Gestion des agents pathogènes
- Aucune gestion des nutriments ou des agents pathogènes
- Proceso complexe
- Coût initial élevé
- Occupe un grand espace |
| Terri Bioenergy | Thermophile et Mésophile | Continue | Voie humide | - Flexibilité du procédé
- Gestion des agents pathogènes
- Aucune gestion des nutriments ou des agents pathogènes
- Proceso complexe
- Coût initial élevé
- Occupe un grand espace |
Il y a également trois autres fournisseurs de technologies de digestion anaérobie au Canada qui n’ont pas été traiter en détail dans la revue de littérature en raison du manque d’information technique disponible à propos de leur procédé. L’entreprise Bähler biogaz, situé en Estrie, offre des services partant de la conceptualisation jusqu’à la mise en service du système de digestion anaérobie (Bähler Biogaz, 2021). Le groupe environnemental AIM, situé en Ontario, offre également des services de conception et d’opération de procédés de biométhanisation (AIM Environmental Group, 2021). Originaire de Mont-Saint-Hilaire, l’organisation Viridis environnement, en collaboration avec Énergère, a développé un procédé de biométhanisation à voie sèche adapté aux besoins des municipalités (Viridis Environnement, 2020).

Comparaison des technologies de digestion anaérobie

Pour résumer, 15 technologies de digestion anaérobie ont été traitées dans cette revue de littérature, la plupart des technologies traitées fonctionnent à température mésophile, cette plage de température permet une production élevée de biogaz. De plus, les microorganismes présents lors de la digestion sont bien adaptés au climat canadien grâce à leur bonne tolérance aux variations de température. Les réacteurs analysés fonctionnent principalement en mode continu, assurant ainsi un apport constant d’énergie sans interruption. Les procédés sont développés majoritairement pour le traitement de matière sous forme humide, les matières sèches doivent alors être diluées avant d’être introduites dans le système. Ce type de procédé consomme généralement plus d’eau et requiert des digesteurs de plus grande taille, mais ce sont les systèmes les mieux adaptés au traitement des matières organiques résiduelles à faible siccité qu’on retrouve communément dans une exploitation agricole, tels que les fumiers et lisiers. Les avantages et inconvénients des différentes technologies s’articulent autour des coûts liés à l’acquisition des installations, de la capacité de traitement, de l’adaptabilité du procédé en fonction des besoins spécifiques du client, du type de matière pouvant être traité, ainsi que des aspects relatifs à l’opération et à l’entretien du système.

Certaines technologies se démarquent davantage grâce à des procédés permettant la gestion des pathogènes et des nutriments présents dans le fumier et le lisier, ce qui s’avère très intéressant pour le secteur agricole. En effet, la teneur élevée en azote et en phosphore du fumier peut causer une surabondance de nutriments dans les cours d’eau à la suite de son épandage comme fertilisant, ce qui entraîne un phénomène appelé l’eutrophisation des eaux : l’excédent de nutriment favorise la
prolifération d’algues qui peuvent entraîner des nuisances olfactives, bloquer le soleil et même libérer des toxines dans certains cas (USGS, 2020). La décomposition des algues par les bactéries consomme l’oxygène dissous dans l’eau, pouvant la rendre incapable de soutenir la vie marine à long terme (USGS, 2020). Au Québec, les fermes agricoles doivent déjà se conformer à un «quota» de phosphore présent dans le fumier, tel que régi par la loi sur la qualité de l’environnement, plus précisément dans l’article 9 du règlement sur les exploitations agricoles (LégisQuébec, 2017). Ainsi, l’addition d’un système de gestion des nutriments dans un procédé de biométhanisation peut représenter un avantage distinct pour les fermes agricoles devant composer avec ce type de restriction.

Section 2 : Présentation de la réglementation en Ontario et au Québec

Approche réglementaire en Ontario

L’approbation de conformité environnementale (ECA) est une exigence qui s’applique à certaines entreprises comportant des opérations complexes ou particulières, telles que les sites d’enfouissement, les usines de traitement des eaux usées, et les systèmes de digestion anaérobie. Cette loi impose des conditions précises à respecter pour les émissions et les rejets liés à l’atmosphère, au bruit, aux déchets et aux eaux usées d’une entreprise (Ministry of the Environment, Conservation and Parks, 2012). Les demandeurs peuvent s’attendre à un délai d’environ un an pour l’examen du dossier, sans compter les délais additionnels pouvant se produire si l’application n’est pas remplie en bonne et due forme. Cette exigence ralentit grandement l’étape de planification d’un projet de digestion anaérobie et peut, dans certains cas, décourager les investisseurs. Les projets effectués sur une exploitation agricole peuvent être exemptés de cette approbation sous certaines conditions, celles-ci seront abordées dans un paragraphe subséquent.

L’autorisation de projet renouvelable (REA) est une exigence pour la plupart des projets de production d’énergie renouvelable en Ontario, encadré par la loi sur les évaluations
environnementales et la loi sur la protection de l’environnement 359/09 (Ministry of the Environment, Conservation and Parks, 2012). Les installations de digestion anaérobie doivent se conformer aux exigences de ce texte législatif afin d’être approuvées par le ministère de l’Environnement, de la Protection de la nature et des Parcs. Cette demande exige notamment à tout projet d’énergie renouvelable d’effectuer une évaluation de terrain et toutes études reliées à cette dernière, ainsi que de rédiger des plans et rapports détaillés sur les aspects techniques du projet. De plus, les promoteurs doivent s’engager dans un processus de consultation avec les municipalités, le public et les collectivités autochtones si applicable.

Exigences du programme RMADF

En premier lieu, un projet de biométhanisation sur une exploitation agricole doit répondre aux exigences relatives à l’origine des matières, à leur entreposage, au type de procédé anaérobie utilisé lors du traitement ainsi qu’à la gestion du biogaz et des extrants de production.

Stratégie de gestion des éléments nutritifs

Des restrictions s’appliquent quant à la provenance des matières organiques résiduelles utilisées dans le procédé de digestion anaérobie. Entre autres, il est interdit de traiter des matières résiduelles
provenant de l’extérieur de l’exploitation agricole. Si le projet prévoit recevoir des matières organiques hors ferme, l’exploitation doit se munir d’une stratégie de gestion des nutriments répondant aux critères établis dans la loi sur la gestion des éléments nutritifs. La stratégie doit notamment démontrer que les procédures opérationnelles répondent aux exigences du règlement 267/03 en ce qui concerne la composition, l’entreposage et la gestion des extrants des matières hors ferme traitées, elle doit être approuvée par le ministère de l’Agriculture, de l’Alimentation et des Affaires rurales (OMAFRA, 2020). Le demandeur doit également produire un plan d’urgence présentant les actions à entreprendre si la stratégie élaborée n’est pas respectée (OMAFRA, 2020). L’énoncé en annexe 2 énumère les déchets organiques acceptés et les restrictions relatives aux matières ne provenant pas d’une exploitation agricole pour une installation de digestion anaérobie adhérant au programme RMADF. Il est généralement plus facile d’obtenir les autorisations nécessaires pour l’opération d’une installation de digestion anaérobie lorsque l’exploitation agricole se limite au traitement de ses extrants de production.

Origine des matières traitées

Au moins 50% du volume des matières organiques traitées doivent provenir de l’exploitation agricole où l’installation de biométhanisation se situe. Les intrants doivent être issus des activités agricoles suivantes : l’élevage d’animaux, la culture agricole, la production laitière ou la transformation de produits fabriqués sur l’exploitation (OMAFRA, 2020). De plus, au moins 50% du volume des matières organiques provenant de la ferme doit être du fumier, ce qui représente un minimum de 25% du volume total des matières traitées. Considérant le potentiel méthanogène relativement faible du fumier, il est recommandé aux exploitations agricoles de diversifier son substrat avec des matières organiques ayant un potentiel méthanogène plus élevé afin d’améliorer la production de biogaz et ainsi la viabilité économique du projet de biométhanisation (OMAFRA, 2020). La figure en annexe 3 présente le potentiel méthanogène de matières organiques issues de plusieurs origines. Une exploitation agricole peut recourir à l’importation de matières organiques afin d’améliorer le potentiel méthanogène de son substrat, elle doit toutefois répondre aux exigences présenter précédemment concernant la stratégie de gestion des éléments nutritifs.

Réception des matières

Les exigences relatives à la réception des matières s’adressent aux déchets organiques ne provenant pas de l’exploitation agricole. Les matières provenant de l’extérieur de la ferme doivent être analysées en laboratoire afin de déterminer la teneur en métal, les matières importées ne
doivent pas dépasser les seuils de concentration de métaux établis dans le règlement (OMAFRA, 2020).

Entreposage des matières
Encore une fois, les exigences liées à l’entreposage visent principalement les matières hors ferme, celles-ci doivent être entreposées sur l’exploitation agricole où se situe l’installation de digestion anaérobie. Une quantité maximale de 200 mètres cubes peut être entreposée à la fois et les règles concernant les réservoirs utilisés lors de l’entreposage varient en fonction du taux de siccité de la matière (OMAFRA, 2020).

Structures et emplacement
La construction d’un digesteur anaérobie mixte réglementé doit être supervisée par un ingénieur afin de s’assurer que les installations respectent les dispositions du règlement 267/03 notamment en ce qui a trait le contrôle des odeurs, du bruit, du biogaz non brûlé, ainsi que le respect des distances minimales avec l’habitation la plus proche (200m) et la zone résidentielle la plus près (450m) (OMAFRA, 2020).

Procédé anaérobie
Certaines exigences doivent être respectées concernant des spécificités techniques du procédé de digestion anaérobie utilisé sur l’exploitation agricole. Par exemple, le temps de séjour des matières résiduelles organiques dans le digesteur doit être d’un minimum de 20 jours et la température de digestion doit être d’au moins 35 °C tout au long de la digestion. Autrement dit, l’installation de digestion anaérobie doit fonctionner soit à température mésophile ou thermophile (OMAFRA, 2020).

Gestion du biogaz
L’exploitation agricole doit s’assurer de pouvoir utiliser la totalité du biogaz produit de manière continue. Certains projets de plus grande taille doivent également se munir d’un système de combustion secondaire des gaz en cas de bris mécanique (OMAFRA, 2020).

Gestion des extrants de production
L’unité agricole où se situe l’installation de biométhanisation doit avoir une capacité d’entreposage du digestat égale à sa production au cours d’une période de 240 jours (OMAFRA, 2020).
Incitatifs disponibles

Les incitatifs énumérés dans cette section se retrouvent sur la liste des subventions pour un projet de biométhanisation suggérée par le ministère de l’Agriculture, de l’Alimentation et des Affaires rurales. Le ministère en fait la promotion sur le site de l’OMAFRA.

Growing Forward 2 est une Initiative fédérale-provinciale territoriale offrant du soutien au développement de compétences, de formation, d’audits et d’évaluation. Dans le cas des exploitations agricoles, le programme pourrait offrir du support financier lors de l’évaluation de la faisabilité et de la conception techniques du projet pouvant aller jusqu’à 50% des coûts reliés à ces étapes du projet (OMAFRA, 2020).

Le fond **SD Natural Gas** est une initiative offerte par Technologies du développement durable Canada (TDDC) en collaboration avec l’association canadienne du gaz (ACG). Le programme offre du soutien aux projets de digestion anaérobie innovateur pouvant s’élever jusqu’à 40% des dépenses admissibles pour un maximum de 15 millions (TDDC, 2020).

Le **programme de partenariats énergétiques communautaires** est une initiative venant en support à la production d’énergie communautaire. Les demandeurs peuvent se faire financer une portion des coûts associés au développement d’un projet d’énergie renouvelable allant jusqu’à 20 000$ (80% des coûts éligibles) pour le volet développement organisationnel (OMAFRA, 2020). Le programme comporte également un volet développement et approbation pouvant couvrir 50% des coûts éligibles jusqu’à concurrence de 500 000$ pour un projet à grande échelle et 100 000$ à petite échelle (OMAFRA, 2020).
Le Fond vert municipal est une initiative de la fédération canadienne des municipalités (FCM) offrant de l’aide financière aux projets municipaux environnementaux notamment dans le but d’améliorer la qualité de l’air, de l’eau et des sols ainsi que de réduire les émissions de gaz à effet de serre (FCM, 2019). Les projets de biogaz s’alliant avec leur municipalité peuvent bénéficier de ce fond. Le programme offre des prêts à bas intérêt allant jusqu’à 10 millions de dollars et une subvention de 15% du montant du prêt (FCM, 2020).

Développé par la Société de gestion du Fonds du patrimoine du nord de l’Ontario, le Northern Business Opportunity Program est un programme offrant des subventions et des prêts aux organisations du nord de l’Ontario pour améliorer la compétitivité, la productivité et la création d’emploi. La subvention couvre un maximum de 50% des dépenses admissibles pour une contribution allant jusqu’à 1 million (OMAFRA, 2020).

Le gouvernement ontarien offre également un Crédit de taxe sur les intrants. Les exploitations agricoles peuvent se faire rembourser la taxe de vente harmonisée payée sur des achats/dépenses en lien avec la construction et l’exploitation d’un procédé de biométhanisation (OMAFRA, 2020).

Le programme de déduction pour amortissement accélérée du gouvernement fédéral permet une dépréciation accélérée de 50% pour les immobilisations utilisées lors de la production, de l’entreposage et de la consommation du biogaz. Afin d’être éligible à cette déduction, le biogaz généré par la digestion anaérobie doit être destiné à la production d’électricité ou de chaleur dans un processus industriel (Agence du Revenu du Canada, 2019).

Le programme ontarien FIT offre un contrat de tarif garanti d’une durée de 20 ans pour l’électricité provenant de source renouvelable. Ce programme s’adresse aux projets de biométhanisation avec une capacité de production entre 10 kW et 500 kW (OMAFRA, 2020). Le programme offre également des incitatifs additionnels pour la production d’électricité lors de période de pointe. Les projets répondant aux exigences RMADF peuvent obtenir un tarif d’achat plus élevé (OMAFRA, 2020).

Finalement, Hydro One, le principal fournisseur d’électricité en Ontario offre un programme de mesurage net à sa clientèle effectuant de l’autoproduction (Hydro One, 2020). Le programme permet aux autoproduceurs d’injeter leurs surplus d’électricité dans le réseau de l’utilitaire en échange d’un crédit sous forme de kilowattheures pouvant s’appliquer à la facture du client.
Approche réglementaire québécoise

Au Québec, la biométhanisation est régie par le ministère de l’Environnement et de la Lutte contre les changements climatiques (MELCC) via le **programme de traitement des matières organiques par biométhanisation et compostage (phase III)** (MELCC, 2020). Ce programme s’inscrit dans le cadre de la quatrième stratégie de la Politique québécoise de gestion des matières résiduelles (PQGMR). Son but étant de réduire la quantité de matière organique destinée à l’élimination dans des sites d’enfouissement (MELCC, 2020). Il est destiné à trois types de demandeurs : les municipalités, les communautés autochtones ou un demandeur privé ayant un établissement au Québec.

Exigences du programme

Afin d’être admissible au programme de traitement des matières organiques par biométhanisation et compostage du Québec, le ministère soumet les demandeurs à des exigences relatives aux matières organiques traitées : **les matières organiques d’origine agricole, telles que le fumier et le lisier, ne peuvent pas constituer plus de 10% du volume total des matières traitées** (MELCC, 2020). Cette exigence démontre que ce programme n’est pas destiné au secteur agricole, il vise plutôt des initiatives à l’échelle municipale.

Les projets planifiant l’utilisation d’un moteur cogénération sont admissibles seulement s’ils permettent une substitution significative de combustible fossile (MELCC, 2020). Ainsi, même si elle est mal desservie par Hydro-Québec, une ferme n’a pas la possibilité d’utiliser un moteur cogénération comme source d’électricité et de chauffage si cela n’entraîne pas une substitution de combustible fossile.

La liste énumérée ci-dessous présente les rapports et déclarations devant être fournis au ministère lors de la demande d’adhésion au PTMOBC, les informations proviennent du cadre normatif publié par le ministère (MELCC, 2020) :

1. Fournir une description des procédés de l’installation, des opérations d’entreposage et de manutention.
2. Faire une étude de dispersion des odeurs et un plan de gestion des odeurs, conformes aux dispositions prévues dans l’article 20 de la loi sur la qualité de l’environnement.
3. Fournir une déclaration d’émissions de GES validée par un organisme accrédité en ISO 14065.

4. Faire un rapport d’évaluation de la résilience aux changements climatiques par un organisme indépendant.

5. Fournir de l’information relative à la méthode employée pour recycler le digestat. Le demandeur doit démontrer qu’il est en mesure de disposer des extraits et fournir toute documentation à cet effet.

L’approche réglementaire du MELCC en matière de biométhanisation s’avère très rigoureuse, la déclaration d’émissions de gaz à effet de serre permet d’évaluer la performance environnementale des projets proposés. De plus, le ministère semble être sensibilisé au concept de résilience comme outil à la transition. En effet, ce dernier exige aux demandeurs de faire évaluer le degré de résilience aux changements climatiques de leur projet. Les mesures établies par le MELCC permettent d’assurer la viabilité économique et environnementale des projets de biométhanisation dans la province.

Incentifs disponibles
Dans le cas du PTMOBC, les subventions offertes peuvent s’élèver jusqu’à 50% des dépenses admissibles, comprenant notamment les frais liés à la préparation et à la certification des rapports à soumettre avec la demande, les coûts d’acquisition des installations et équipements, ainsi que les salaires du personnel affecté à la construction du système (MELCC, 2020). Il est important de noter que le PTMOBC prévoit une contribution minimale de 26,67% de la part du demandeur. Alors, le cumul des subventions provinciales, fédérales et municipales ne peut pas dépasser 73,3% des dépenses admissibles (MELCC, 2020).

L’organisme Transition énergétique Québec a développé le programme Technoclimat, ayant un volet pour la production de bioénergies visant à soutenir l’innovation dans le secteur énergétique et de la réduction des émissions de gaz à effet de serre (Transition énergétique Québec, 2021). Ce programme s’adresse aux projets dont le coût total se situe entre 6 et 150 M$, l’aide financière peut atteindre jusqu’à 50% des dépenses admissibles.

Au niveau fédéral, les programmes de biométhanisation peuvent recevoir une subvention grâce à l’entente bilatérale intégrée via le volet infrastructure verte. L’objectif de ce programme est d’offrir du soutien aux projets d’infrastructure favorisant la réduction des émissions de gaz à effet
de serre (GES) ainsi qu'une plus forte résilience face aux changements climatiques (Infrastructure Canada, 2018).

Développement économique Canada (DEC) offre également du financement pour les projets dans les régions du Québec, notamment via le programme de Croissance économique régionale par l’innovation (Gouvernement du Canada, 2020).

Énergir a mis en place un tarif de rachat garanti à prix prévisible d’une durée pouvant aller jusqu’à 20 ans aux producteurs afin de stimuler la filière de production de gaz naturel renouvelable (GNR) au Québec (Sigouin-Plasse, H., 2018). Le prix d’achat offert permettrait notamment de couvrir les coûts élevés reliés à la production du GNR. Selon le dossier R-4008-2017 disponible sur le site de la Régie de l’énergie, le prix d’achat est établi en fonction de coûts évités et peut varier en fonction de la capacité projet en question, mais Énergir estime le prix d’achat dans une fourchette de prix entre 7$/GJ et 22$/GJ pour le gaz naturel renouvelable (Régis de l’énergie, 2019). Le rapport de l’association canadienne de biogaz faisant état de la situation concernant la biométhanisation au Canada va dans le même sens au niveau du prix offert (Canadian Biogas Association, 2018). L’organisation offre également un service d’accompagnement à chaque étape d’un projet de digestion anaérobie (Énergir, 2020).

Finalement, Hydro-Québec propose une initiative de mesurage net pour autoproducteur (Hydro-Québec, 2020) similaire au programme ontarien présenté précédemment. Ce programme est cependant surtout utilisé par des producteurs d’électricité solaire.
Analyse et interprétation

Les restrictions imposées par le PTMOBC relatif au volume de fumier et lisier pouvant être traitées dans les installations subventionnées, limitées à seulement 10% du volume total des matières destiné au traitement, représentent une contrainte importante à l’intégration des technologies de biométhanisation en milieu agricole. Comme mentionné en introduction, l’élevage est le plus important secteur de l’industrie agricole au Québec, générant des quantités énormes de fumier. Afin de respecter cette exigence, les fermes d’élevage souhaitant intégrer un système de digestion anaérobie sont contraintes d’importer des quantités importantes de matières organiques s’ils souhaitent traiter la totalité du fumier produit sur la ferme. Cela signifie également que les exploitations agricoles doivent acquérir de plus grosses installations de traitement et d’entreposage des matières, demandant un apport en capital plus élevé de la part du demandeur. Le ministère ne justifie pas clairement la raison pour laquelle cette restriction a été mise en vigueur, ce pourrait potentiellement être en lien avec le potentiel méthanogène relativement bas du fumier et du lisier. L’intégration de matières organiques avec un potentiel méthanogène plus élevé est en mesure améliorer la production de biogaz et la rentabilité du projet (OMAFRA, 2020). Aussi, un projet de plus grande envergure peut potentiellement générer des économies d’échelle. Le PTMOBC est l’unique programme de soutien au développement d’installations de biométhanisation au Québec, ce dernier ne semble pas être adapté aux besoins du secteur agricole.

En Ontario, les exigences du RMADF en ce qui concerne les matières organiques traitées vont carrément à l’opposé de la stratégie adoptée au Québec en réclamant qu’un minimum de 25% des matières traitées soit du fumier ou du lisier (OMAFRA, 2020). Ainsi, les fermes d’élevage ne sont pas contraintes à importer des matières organiques, ils possèdent une plus grande flexibilité quant à la taille des installations désirée. La province ontarienne reconnaît l’importance que représente le secteur agricole pour le développement de la filière de biométhanisation comme source d’approvisionnement en énergie renouvelable, c’est pourquoi elle a mis en place un programme destiné exclusivement aux projets sur ferme.

L’intérêt pour les projets de biométhanisation en cogénération est flagrant pour les exploitations agricoles, notamment en raison que la chaleur récupérée lors de la production d’électricité peut être utilisée dans plusieurs activités telles que le séchage de fourrage et le chauffage de bâtiments d’élevage (ADEME, 2019). Selon un rapport de l’Agence de l’Environnement et de la Maîtrise de
l’Énergie (ADEME), c’est plus de 90% des installations de méthanisation agricole en France qui choisissent la cogénération pour valoriser le biogaz (ADEME, 2019). La tendance est similaire en Ontario, la quasi-totalité des projets de biométhanisation en milieu agricole recensé sur le site de l’association canadienne de biogaz privilégie la cogénération (association canadienne de biogaz, 2020). Au Québec, les projets de cogénération se font rares notamment en raison du faible prix de l’électricité et du fait qu’Hydro-Québec n’offre pas de tarif de rachat garanti pour la production d’électricité renouvelable (seulement du mesurage net pour les autoproduleurs). La belle province bénéficie d’une abondance d’électricité propre à bas prix grâce à son réseau de barrage hydroélectrique, ce qui vient réduire l’attrait pour les projets de cogénération. Un demandeur doit également prouver que son projet de cogénération entraîne une substitution significative de combustible fossile afin d’être admissible à ce type de projet. Dans ce contexte, la production de GNR est plus avantageuse considérant le tarif de rachat garanti à long terme offert par Énergir. Toutefois, les projets d’injection nécessitent des investissements additionnels dans des installations destinées à la purification du biogaz (Énergir, 2019).

Finalement, l’Ontario encourage l’intégration de la biométhanisation dans les exploitations agricoles en offrant un allègement réglementaire pour les fermes qui répondent aux exigences du programme RMADF. Ces exemptions facilitent et accélèrent la mise en œuvre d’un projet de biométhanisation en milieu agricole (OMAFRA, 2020). Au Québec, les critères d’admissibilité sont les mêmes pour tout type de demandeur et les délais requis pour l’obtention des autorisations sont fastidieux. Selon un rapport émis par l’Association Canadienne de Biogaz, trois projets de digestion anaérobie au Québec détenant des niveaux de financement adéquat furent abandonnés en raison de délais de l’ordre de 18 mois afin d’obtenir les autorisations nécessaires (Canadian Biogas Association, 2018).

En somme, les conditions nettement plus favorables à la biométhanisation agricole en Ontario expliquent le plus grand nombre de projets dans cette province, alors que le Québec n’en compte qu’un seul, celui de la Coop Agri-Énergie Warwick.
Section 3 : Analyse économique pour une ferme typique au Québec

Cette section portera sur une analyse de la rentabilité pour un cas typique de ferme au Québec afin de donner une idée des coûts et des revenus pouvant être générée par une installation de digestion anaérobie. Comme présenté en introduction, le secteur agricole québécois est largement dominé par l’élevage bovin, la production laitière étant le secteur agroalimentaire le plus important de la province avec plus de 4 877 producteurs en 2019 (Gouvernement du Québec, 2021). D’ailleurs, l’industrie du lait représente environ 26% des recettes monétaires agricole au Québec (MAPAQ, 2020). Ainsi, il serait pertinent d’effectuer cette analyse pour un cas typique de ferme de production laitière. Les fermes laitières québécoises détiennent en moyenne 73 vaches par exploitation, pour un total de 356 100 têtes dans l’ensemble du territoire (Gouvernement du Québec, 2021). Une vache laitière produirait environ 62 kg par jour de fumier, ce qui représente 22,63 tonnes de matières résiduelles par année (Statistique Canada, 2006), comme il est présenté dans le tableau en annexe 4. Ainsi, les fermes laitières québécoises produisent en moyenne 1 652 tonnes de fumier chaque année. L’analyse économique sera effectuée pour une ferme fictive suivant les métriques définies ci-dessus.

CAPEX et OPEX

Les coûts associés à la conception, à la construction, à la mise en service d’une unité de production de biogaz, ainsi qu’à l’acquisition des infrastructures et des équipements (CAPEX) pour un projet de digestion anaérobie se situent généralement dans une fourchette de prix variant entre 400 et 1 500 USD par tonne de capacité de traitement annuel (Lemonde, M., 2019). Cette estimation fournie par l’association Biogas World correspond aux coûts de projets approuvés au Québec par le MELCC, tels que présenté en annexe 5. Notons que ces projets sont tous des projets municipaux ou industriels, et ne reflètent que très peu les conditions d’une ferme agricole. Il y a plusieurs variables faisant fluctuer ce prix : le type de technologie retenue, la redondance et le nombre de phases du système, le degré d’automatisation du procédé ainsi que la qualité désirée du digestat et du biogaz (Lemonde, M., 2019).

Au niveau des coûts opérationnels et de maintenance (OPEX), les dépenses sont estimées en pourcentage par rapport au CAPEX, généralement entre 1% et 10%. Cette catégorie de coûts inclue notamment la main-d’œuvre pour l’exploitation et la maintenance du système, les changements de
pièces et la réparation d’équipement, l’entreposage et le transport des matières organiques, l’énergie requise pour le fonctionnement du système, le transport et la vente ou l’épandage du digestat, les analyses en laboratoire de la qualité du biogaz et du digestat, les assurances, les taxes et les intérêts sur le prêt (Lemonde, M., 2019).

L’association Biogas World dispose d’un outil permettant d’estimer les coûts d’une installation de digestion anaérobie en fonction des spécificités et des besoins du demandeur (Biogas World, 2021). Dans le cas présent, l’estimation des coûts en capital s’élève à 317 723 USD +/- 30% pour un système en milieu agricole, les résultats de l’analyse sont détaillés dans l’annexe 6. Un procédé sur ferme destiné uniquement au traitement de fumier bovin est relativement simple et requiert peu d’équipement, ce qui vient expliquer les coûts relativement faibles estimés pour le projet.

Étude de cas - Production compacte et automatisée de biogaz à la ferme – Canada

International Energy Agency (IEA) a effectué une étude de cas en 2020 portant sur un système de digestion anaérobie à petite échelle dans la province ontarienne utilisant la technologie Biolectric, présenté dans la première section. Le système a été construit, il est en opération depuis 2018 sur la ferme laitière Harcolm à Beachville, cette exploitation possède 75 vaches laitières (International Energy Agency, 2020). Les chiffres présentés dans cette étude de cas sont particulièrement pertinents en raison que la ferme est du même type et a une taille similaire aux métriques définies précédemment pour une ferme typique au Québec. De plus, la proximité géographique et les similitudes au niveau de la réglementation entre les deux provinces canadiennes permettent d’utiliser ces chiffres avec un certain degré de confiance afin d’extrapoler les coûts d’un tel projet au Québec. La figure à la page suivante présente les principales dépenses, sources de revenus et économies reliées au projet sur la ferme Harcolm.
Le coût en capital de l’usine de digestion anaérobie sur la ferme laitière s’est élevé à 395 000$ CDN avec des coûts opérationnels et de maintenance fluctuant entre 15 000 et 20 000$, ce qui représente environ 4 à 5% du CAPEX (International Energy Agency, 2020). La cogénération est le type de valorisation utilisé dans le cas de ce projet, la vente d’électricité représente un revenu annuel estimé à 20 000$ grâce au programme de tarif d’achat garanti de la province ontarienne au prix de 25,8¢/kWh (incluant une inflation de 20% sur 20 ans) (International Energy Agency, 2020). Le programme de mesurage net ontarien permet également à la ferme d’économiser 12 000$ annuellement en dépenses d’électricité. La récupération de la chaleur provenant du moteur cogénération a permis à la ferme de réduire ses besoins en propane pour le chauffage des bâtiments d’exploitation, ce qui se traduit en des économies de 10 000$ par année (International Energy Agency, 2020). Une autre annuité fort intéressante est la réduction des coûts de litière pour les vaches laitières de 15 000 $ en valorisant une partie du digestat comme litière de haute qualité. L’aménagement des logettes où les vaches laitières vivent peut avoir un impact significatif sur la qualité du lait produit (OMAFRA, 2016), c’est pourquoi les fermiers sont prêts à investir dans une litière de qualité afin d’assurer le bien-être des vaches. Les deux derniers flux monétaires sont en lien à la réduction de la manutention du fumier (récupération, séchage, entreposage, etc.) et à la réduction de l’utilisation de fertilisant chimique, étant remplacés par le digestat, un fertilisant de haute qualité.

Source : International Energy Agency, 2020

<table>
<thead>
<tr>
<th>EXPENSES / REVENUE / COST SAVINGS</th>
<th>EXPENSES ($ CDN)</th>
<th>ANNUAL REVENUE / COST SAVINGS ($ CDN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital and installation expense</td>
<td>$395,000</td>
<td></td>
</tr>
<tr>
<td>Annual operating and maintenance expenses (including labour)</td>
<td>$15,000 to $20,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Electricity sales (MicroFIT contract)</td>
<td>$12,000</td>
<td></td>
</tr>
<tr>
<td>Electricity displaced purchases (Net Meter contract)</td>
<td>$10,000</td>
<td></td>
</tr>
<tr>
<td>Heat displaced purchases (propane)</td>
<td>$8,000</td>
<td></td>
</tr>
<tr>
<td>Cost savings on manure handling</td>
<td>$15,000</td>
<td></td>
</tr>
<tr>
<td>Cost savings on animal bedding</td>
<td>$3,000</td>
<td></td>
</tr>
<tr>
<td>Cost savings on chemical fertilizer</td>
<td>$15,000</td>
<td></td>
</tr>
</tbody>
</table>
Le tableau suivant présente le calcul de la VAN pour le projet de biométhanisation en utilisant les données présentées dans le tableau à la figure 16, avec un taux de rendement requis de 8%, un taux d’amortissement linéaire tout au long de la durée de vie du projet (20 ans) de 5% et un taux d’imposition de 26,5% tel qu’imposer aux entreprises dans la province ontarienne (Gouvernement du Canada, 2021).

Figure 17 : Calcul de la VAN – Ferme laitière Harcolm

<table>
<thead>
<tr>
<th>Calcul VAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux de début de projet</td>
</tr>
<tr>
<td>Investissement initial</td>
</tr>
<tr>
<td>Flux de milieu de projet</td>
</tr>
<tr>
<td>Dépenses opérationnelles et de maintenance</td>
</tr>
<tr>
<td>Vente électricité</td>
</tr>
<tr>
<td>Réduction des coûts en électricité</td>
</tr>
<tr>
<td>Réduction des coûts de chauffage (propane)</td>
</tr>
<tr>
<td>Réduction des coûts de manutention du fumier</td>
</tr>
<tr>
<td>Réduction des coûts de litière animale</td>
</tr>
<tr>
<td>Réduction des coûts en fertilisant chimique</td>
</tr>
<tr>
<td>Économies d'impôt dues à la DPA</td>
</tr>
<tr>
<td>Flux de fin de projet</td>
</tr>
<tr>
<td>Valeur résiduelle</td>
</tr>
<tr>
<td>Perte d'économie d'impôt</td>
</tr>
<tr>
<td>VAN</td>
</tr>
</tbody>
</table>

Il est possible de constater que la VAN est légèrement positive dans l’étude de cas présente. Cependant, les subventions disponibles pour ce type de projet n’ont pas été prises en compte. Celles-ci peuvent représenter jusqu’à 50% des coûts en capital, ce qui devrait améliorer considérablement la viabilité économique du projet. La mise en œuvre d’un projet identique au Québec ne serait pas autant favorable, puisque la province ne dispose d’aucun tarif préférentiel pour la production d’énergie renouvelable issue de la digestion anaérobie. Le programme MicroFIT ontarien encourage le secteur en offrant un tarif d’achat s’élevant à 25,8¢/kWh, ce qui
est largement plus élevé que le tarif de vente du réseau provincial. De plus, les économies liées au mesurage net seraient moins élevées puisque l’électricité est moins chère au Québec. En effet, les fermes sont assujetties au tarif D d’Hydro-Québec, la première tranche du tarif s’élève à 6,159¢/kWh et la deuxième tranche est fixée à 9,502¢/kWh (Hydro-Québec, 2021). En Ontario, le tarif de base est fixé à 9,8¢/kWh pour les entreprises et s’élève à 11,5¢/kWh lorsque la consommation d’énergie excède 750 kWh (Ontario Energy Board. 2021).

Bénéfices socio-économiques

Comme mentionné précédemment, le Québec dispose d’un marché du carbone offrant des crédits compensatoires pour les projets permettant de réduire les émissions de CO2e dans l’atmosphère, les crédits offerts s’élevaient à 22,66$ par tonne de CO2e séquestrer en 2020. Le graphique suivant présente les différentes sources et quantités d’émissions de CO2e avant et après l’installation du système de digestion anaérobie. Dans le premier scénario, la ferme laitière s’approvisionne en électricité via le réseau provincial, utilise du propane pour le chauffage et du sable comme litière de vache.

Figure 18 : Émissions de CO2e sur la ferme, avant et après le projet de biométhanisation

Source : International Energy Agency, 2020
Selon les calculs effectués pour cette étude de cas, la réduction des émissions de GES s’élève à 70 tonnes de CO2e par année, ce qui représenterait des crédits compensatoires s’élevant à 1 586$ en 2021. Le prix minimal de vente aux enchères croît à un taux de 5% plus inflation (MELCC, 2021), ce qui représente un revenue additionnel intéressant pour les projets de digestion anaérobie au Québec.

Autres bénéfices à considérer

Il existe aussi un nombre important de co-bénéfices liés à la biométhanisation agricole qui devraient être pris en compte dans l’évaluation des projets, notamment pour justifier des subventions gouvernementales. Ces co-bénéfices sont brièvement présentés ici.

La digestion anaérobie contribue à la **réduction de la nuisance olfactive** liée à l’épandage du fumier (Nielsen L. H. & Hjort-Gregersen, K., 2002).

La biométhanisation contribue à la **valorisation de l’indépendance énergétique**, l’autoproduction d’énergie permet aux fermes de réduire leur besoin en approvisionnement d’énergie provenant de l’extérieur (Fédération nationale les Travaux publics (FNTP), 2018).

Le traitement du fumier par digestion anaérobie **améliore la qualité de la matière résiduelle fertilisante** (Danish Centre for Environment and Energy (DCE), 2013) en neutralisant les agents pathogènes et certains composés organiques volatils nocifs à l’environnement (Morin, P., Marcos, B., Moresoli, C. and Laflamme, C.B., 2010).

Ces bénéfices sont très complexes à monétiser et requièrent de laborieuses recherches afin d’estimer leurs valeurs, lesquelles ne sont pas nécessairement transférables d’un pays à l’autre. Dans cette optique, ces avantages n’ont pas été comptabilisés dans cette analyse économique, mais ils peuvent tout de même être pris en compte dans le processus décisionnel.
Analyse économique des technologies de purification

Considérant l’absence de tarif d’achat pour l’électricité renouvelable et la présence d’un tarif préférentiel pour la production de gaz naturel renouvelable au Québec, il serait pertinent d’analyser les coûts liés à l’acquisition de technologies de purification. La figure suivante présente le coût de différents types de technologies de purification du biogaz en fonction de la capacité de traitement en nanomètre cube par heure (Nm3/h).

Figure 19 : Coût d’acquisition de technologies de purification

À la lumière de ce graphique, il est possible de constater que les économies d’échelle peuvent réduire de plus de moitié les coûts d’investissement liés à l’acquisition d’une technologie de purification. La purification du biogaz à petite échelle, partant d’une capacité de 0 à 100 normo mètre cube par heure (Nm3/h), c’est-à-dire des mètres cube normalisés, est généralement très coûteuse en raison des coûts d’investissement élevés liés à l’acquisition de l’équipement. En effet, un projet à petite échelle requiert plus ou moins le même nombre de tuyaux, de valves et d’équipements d’analyse qu’une installation à beaucoup plus grande échelle, la seule différence réside dans la taille de l’équipement qui ne se traduit pas nécessairement en de réelles économies (Bauer, F., Hulteberg, C., Persson, T., Tamm, D., 2013). Selon un rapport publié en 2013 par le

Source : Bauer, F., Hulteberg, C., Persson, T., Tamm, D., 2013
Centre suédois de technologie du gaz, les coûts en investissement pour l’acquisition de technologies de purification du biogaz à petite échelle s’élèvent à environ 360 000 € et peuvent atteindre 460 000 € pour une capacité de traitement allant jusqu’à 72 Nm3/h (Bauer, F., Hulteberg, C., Persson, T., Tamm, D., 2013). Selon l’ADEME, le fumier bovin frais a un potentiel méthanogène d’environ 48 Nm3 par tonne de matière brute avec un taux de méthane s’élevant à 65% (ADEME, 2013). Il est ainsi estimé que le projet pourrait potentiellement avoir une production énergétique annuelle s’élevant à 79 296 Nm31 de biogaz. Les systèmes de purification peuvent pratiquement fonctionner de manière continue, ce qui signifie que le système doit avoir une capacité minimale de 9,24 Nm3/h2, afin de traiter la totalité du biogaz produit annuellement. Les estimations du calculateur de l’association Biogas World sont plus généreuses avec une production de 16 m3/h, qui s’avère tout de même très faible. Dans cette optique, il semble aberrant dans le cas d’une ferme typique au Québec d’opter pour un projet de biométhanisation à injection, puisque la quantité de biogaz pouvant potentiellement être produite est uniquement en mesure d’utiliser environ 13% à 22% de la capacité du système de purification à petite échelle, l’actif ne serait pas utilisé de façon optimale. De plus, dans le cas du projet effectué sur la ferme Harcolm, l’ajout d’un tel système ferait potentiellement doubler le montant d’investissement initial, ce qui ferait certainement chuter la VAN sous une valeur négative.

Au Québec, il existe un seul projet de digestion anaérobie produisant du gaz naturel renouvelable en milieu agricole, une initiative de la coopérative Agri-Énergie Warwick, réunissant plus d’une dizaine de producteurs agricoles de la MRC d’Arthabaska (Coop Agri-Énergie Warwick, 2021). Le GNR est produit à partir de lisiers et de fumiers de bovins laitiers, auquel sont ajoutées des matières organiques résiduelles avec de potentiels méthanogènes plus élevés provenant d’entreprises environnantes. La Coop Carbone, une coopérative de solidarité à but non lucratif, s’occupe du développement, de la construction et de l’opération de l’usine de biométhanisation, le projet devrait être opérationnel au courant de l’année 2021 (Coop Agri-Énergie Warwick, 2021). Les installations à grande échelle nécessaire pour le traitement des matières organiques résiduelles et du biogaz brut permettent à la coopérative de faire des économies d’échelle et d’obtenir un tarif d’achat avantageux pour la production du GNR. Le coût du projet est évalué à 12 M$, la Coop Agri-Énergie Warwick a bénéficié d’une aide financière provenant des deux paliers de

1 1 652 tonnes de matières brutes multipliées par le potentiel méthanogène
2 79 296 Nm3 / (365*98%) / 24 heures
gouvernements totalisant 4,7 M$, ce qui représente 39% du montant total investi. L’usine de biométhanisation devrait avoir une production de GNR chiffrer à 2,3 millions Nm3 (Coop Agri-Énergie Warwick, 2021), ce qui équivaut à une production d’environ 88 000 GJ après conversion (BC Ministry of Finance, 2013). Considérant le tarif d’achat offert par Énergir situé dans une fourchette de prix entre 7$/GJ et 22$/GJ, la vente du GNR représenterait un revenu annuel entre 616 000 $ et 1 936 000 $ tout dépendant le prix retenu. Dans le cas actuel, l’analyse utilisera un prix moyen de 14,5$/GJ. De plus, le projet permet la réduction annuelle de 6 500 tonnes de CO2e, ce qui représente un revenu potentiel de 147 290 $ en crédits compensatoires via le programme SPEDE. Selon un rapport émis par la Coop Carbone, il n’y a aucun protocole en place permettant au projet de bénéficier de crédits compensatoires (Coop Carbone, 2019). Toutefois, le MELCC serait en train d’évaluer la possibilité d’adapter un tel protocole afin que le secteur agricole puisse en bénéficier. Le tableau suivant présente un calcul de la VAN similaire à celui effectuer pour la ferme Harcolm.

Figure 20 : Calcul de la VAN – Coopérative Agricole de Warwick

| Calcul VAN |
|------------------|-------------------|
| Flux de début de projet | |
| Investissement initial | (12 000 000,00) $ |
| Subvention gouvernementale | 4 700 000,00 $ |
| Flux de milieu de projet | |
| Dépenses opérationnelles et de maintenance | (4 330 620,00) $ |
| Vente GNR | 9 209 785,20 $ |
| Réduction des coûts de manutention du fumier | 1 754 175,19 $ |
| Réduction des coûts de litière animale | 3 289 078,48 $ |
| Réduction des coûts en fertilisant chimique | 657 815,70 $ |
| Économies d'impôt dues à la DPA | 1 177 777,78 $ |
| Crédits compensatoires SPEDE | 1 063 095,03 $ |
| Flux de fin de projet | |
| Valeur résiduelle | - $ |
| Perte d'économie d'impôt | - $ |
| VAN | 5 521 107,38 $ |
Encore une fois, il est possible de constater que les subventions offertes par l’État sont indispensables afin d’avoir un degré de rentabilité raisonnable. De plus, le taux de rendement requis utilisé dans les calculs est de 8%, ce qui est relativement faible pour un projet d’investissement en infrastructure. La valeur attribuée aux crédits compensatoires du programme SPEDE pourrait être revue à la hausse, tout dépendant l’évolution du marché du carbone au Québec au cours des 20 prochaines années. Deux facteurs de succès important à considérer dans le cas de ce projet sont la forte concentration de producteurs laitiers près de l’usine de digestion anaérobie et la proximité du site de production au réseau gazier. Somme toute, ce projet de gaz naturel renouvelable dans la municipalité de Warwick semble viable d’un point de vue économique et constitue un précédent intéressant pour l’élaboration de nouveaux projets de biométhanisation à injection en milieu agricole au Québec.

Conclusion

La biométhanisation est un procédé de traitement des matières organiques résiduelles ayant un grand potentiel pour le secteur agricole. La production énergétique peut être utilisée à même la ferme ou destinée à la vente sur le réseau provincial, que ce soit sous forme d’électricité ou de gaz naturel renouvelable.

Plus de 15 technologies de digestion anaérobie commercialisées au Canada ont été analysées dans la revue de littérature, dont certaines ayant été développées spécifiquement pour le secteur agricole, tel que les technologies Biolectric, Microferm, DLS Biogas, AgriSelect, COCCUS et Biolectric. L’addition de procédés permettant la gestion des agents pathogènes et des nutriments contenus dans les matières organiques résiduelles traitées, notamment le fumier, représente une valeur ajoutée intéressante pour un projet de biométhanisation en milieu agricole considérant les lois encadrant la pratique de l’épandage au Québec.

Au niveau de la réglementation et des subventions au Québec et en Ontario, la province ontarienne a développé des programmes afin de stimuler la filière de biométhanisation en milieu agricole (RMADF, FIT, allègement réglementaire), ce qui n’a pas été observé de l’autre côté de la frontière. Le programme québécois encadrant la biométhanisation n’est pas destiné au secteur agricole, il a été développé principalement afin de soutenir les projets à l’échelle municipale. Ce type de projet s’effectue dans un contexte complètement différent du milieu agricole, notamment en ce qui a trait
la complexité des procédés, l’emplacement et l’origine des matières à valoriser. D’ailleurs, ce programme limite grandement la quantité de matière d’origine agricole pouvant être traitée par un système de digestion anaérobie subventionné. Finalement, il n’y a aucun programme FIT pour l’achat d’électricité renouvelable, ce qui affecte négativement la rentabilité d’un projet de cogénération. Ce type de projet semble être favorisé par le secteur agricole en raison des économies en approvisionnement d’énergie que représente la production d’électricité et de chaleur pour une ferme, de la simplicité du procédé et de sa viabilité économique à petite échelle.

L’analyse économique effectuée dans la troisième section de cette recherche a permis d’estimer les coûts en investissement d’un projet de biométhanisation pour un cas typique de ferme laitière au Québec, situé dans une fourchette entre 350 000 et 500 000 $ pour un projet de cogénération. La VAN calculé utilisant les chiffres fournis dans l’étude de cas à la ferme Harcolm était négative de seulement 10 000 $ sans la prise en compte des nombreuses subventions disponibles pour ce type de projet. Le niveau de subvention s’élève généralement entre 25 à 50% des coûts d’investissement, signifiant qu’un projet de cogénération peut être rentable même à petite échelle – si le prix de l’électricité et les conditions du marché électrique sont favorables. En ce qui a trait les projets de gaz naturel renouvelable, les investissements additionnels requis pour l’acquisition des installations de purification du biogaz feraient potentiellement doubler le coût initial d’un projet à petite échelle. La quantité de biogaz produite sur une ferme laitière selon les métriques retenues ne permettrait pas d’optimiser l’utilisation des installations de purification, ce qui n’est pas souhaitable afin d’assurer la viabilité économique d’un projet de GNR. Toutefois, le projet de GNR mis en place par la Coop Carbone en partenariat avec la Coop Agri-Énergie Warwick démontre qu’il est possible de développer cette filière dans le secteur agricole en adoptant une approche innovante afin de bâtir des projets à plus grande échelle étant rentables.
Annexe 1 : Portrait de la valorisation du biogas et du gaz naturel renouvelable au Canada

Biogas and RNG in Canada

Biogas and RNG Energy Capacity

Operational and initiated projects generate:

- 6 PJ of RNG
- 196 MW of clean electricity
- 260 Mm³ of biogas for direct use

Biogas Energy Usage

- Electricity generation
- Upgraded to RNG
- Heat or direct use

Operating Biogas and RNG Projects in Canada

- 45 Agricultural Digesters
- 9 Industrial Digesters
- 126 Wastewater Treatment Facilities
- 99 Landfill Gas Capture Systems

Source : Canadian Biogas Association, 2021
Annexe 2 : Matières ne provenant pas d’une exploitation agricole\(^3\)

Une exploitation agricole peut recevoir les matières suivantes dans le but de les traiter dans un digesteur anaérobie mixte réglementé :

1. Les déchets organiques qui à la fois :
 i. sont dérivés de la transformation d’aliments du bétail, ii. ne contiennent pas de produits animaux.

2. Les déchets organiques qui à la fois :
 i. sont dérivés de la transformation d’aliments du bétail, ii. contiennent des produits animaux, mais seulement des produits animaux qui ont été dénaturés par la chaleur, iii. ont une teneur en matière sèche d’au moins 70 pour cent.

3. Les déchets organiques dérivés du séchage ou du nettoyage des grandes cultures ou des cultures de noix.

4. Les déchets organiques dérivés de la transformation des grandes cultures ou des cultures de noix.

5. Les déchets organiques dérivés de la production d’éthanol ou de biodiesel.

7. Les déchets organiques dérivés de la transformation des aliments dans des :
 i. boulangeries, ii. confiseries, iii. laiteries et installations de transformation de produits laitiers, iv. installations de transformation de fruits et de légumes, v. installations de transformation de céréales et de grains, vi. installations de transformation d’oléagineux, vii. installations de fabrication d’aliments pour collations, viii. brasseries et distilleries, ix. établissements vinicoles, x. les installations de fabrication de boissons.

9. Les déchets de fruits et de légumes.

10. Les déchets organiques provenant de serres, de pépinières, de jardineries ou de magasins de fleurs qui ne font pas partie d’une exploitation agricole.

11. Les déchets organiques qui à la fois :
 i. sont dérivés de la transformation d’aliments pour animaux de compagnie, ii. ne contiennent pas de produits animaux.

12. Les déchets organiques qui à la fois :
 i. sont dérivés de la transformation d’aliments pour animaux de compagnie, ii. contiennent des produits animaux, mais seulement des produits animaux qui ont été dénaturés par la chaleur, iii. ont une teneur en matière sèche d’au moins 70 pour cent.

\(^{3}\) Gouvernement de l’Ontario, 2020

55
Les matières suivantes peuvent être reçues dans une exploitation agricole dans le but de les traiter dans un digesteur anaérobie mixte réglementé, sous réserve des restrictions qu’énonce le présent règlement à l’égard des matières mentionnées :

1. Les déchets organiques qui sont dérivés de la transformation d’aliments du bétail et qui, selon le cas :
 i. contiennent des produits animaux qui n’ont pas été dénaturés par la chaleur, ii. contiennent des produits animaux, qu’ils aient été dénaturés par la chaleur ou non, et ont une teneur en matière sèche de moins de 70 pour cent.

2. Le fumier de panse.

3. Les déchets organiques provenant d’installations où des aliments, y compris des aliments pour animaux, sont transformés, préparés ou distribués, sauf les déchets organiques visés à l’annexe 1.

4. Les déchets organiques produits par un procédé de flottation à air dissous utilisé pour le traitement des eaux usées d’installations où des aliments, y compris des aliments pour animaux, sont transformés ou préparés.

5. Les déchets organiques qui sont dérivés de la transformation d’aliments pour animaux de compagnie et qui, selon le cas :
 i. contiennent des produits animaux qui n’ont pas été dénaturés par la chaleur, ii. contiennent des produits animaux, qu’ils aient été dénaturés par la chaleur ou non, et ont une teneur en matière sèche de moins de 70 pour cent.

Les matières suivantes ne doivent pas être reçues dans une exploitation agricole dans le but de les traiter dans un digesteur anaérobie mixte réglementé :

1. Les solvants, lorsqu’il s’agit de composés organiques volatils utilisés comme agents nettoyants, délayants, dissolvants, diluants ou agents réducteurs de la viscosité ou à une fin similaire.

2. Les produits pétroliers et les hydrocarbures.

3. Les résines et les plastiques, sauf s’ils se trouvent dans une matière mentionnée à l’annexe 1 ou 2 dont la teneur en ceux-ci ne dépasse pas 0,5 pour cent en poids sec.

4. Les déchets provenant des déchets de cuisine des avions.

Annexe 3 : Potentiel méthanogène de différentes matières organiques

Source : Agence de l’Environnement et de la Maîtrise de l’Énergie (ADEME), 2013
Annexe 4 : Production de fumier annuel selon le type de bétail

Tableau 4 : Quantité de fumier produite par bétail

<table>
<thead>
<tr>
<th>Variable</th>
<th>Poids moyen des animaux (kg)</th>
<th>Fumier (kg/année)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaches de boucherie</td>
<td>635</td>
<td>13 444</td>
</tr>
<tr>
<td>Chevaux et poneys</td>
<td>450</td>
<td>8 377</td>
</tr>
<tr>
<td>Moutons et agneaux</td>
<td>45</td>
<td>662</td>
</tr>
<tr>
<td>Chèvres</td>
<td>64</td>
<td>958</td>
</tr>
<tr>
<td>Taureaux</td>
<td>726</td>
<td>15 364</td>
</tr>
<tr>
<td>Veaux</td>
<td>204</td>
<td>4 321</td>
</tr>
<tr>
<td>Génisses</td>
<td>421</td>
<td>8 904</td>
</tr>
<tr>
<td>Vaches laitières</td>
<td>612</td>
<td>22 706</td>
</tr>
<tr>
<td>Veaux</td>
<td>159</td>
<td>1 358</td>
</tr>
<tr>
<td>Pores d’engraisement et de finition</td>
<td>61</td>
<td>1 287</td>
</tr>
<tr>
<td>Porcelets sevrés et non sevrés</td>
<td>11</td>
<td>613</td>
</tr>
<tr>
<td>Truies et jeunes truies</td>
<td>125</td>
<td>1 358</td>
</tr>
<tr>
<td>Bouvillons</td>
<td>454</td>
<td>9 603</td>
</tr>
<tr>
<td>Poulets à griller, à rôtir et poulets de Cornouailles</td>
<td>0,9</td>
<td>28</td>
</tr>
<tr>
<td>Poules pondeuses</td>
<td>1,8</td>
<td>42</td>
</tr>
<tr>
<td>Poulettes</td>
<td>0,9</td>
<td>28</td>
</tr>
<tr>
<td>Dindons et dinde</td>
<td>6,8</td>
<td>117</td>
</tr>
</tbody>
</table>

Annexe 5 : Projets confirmés de biométhanisation au Québec, dans le programme PTMOBC

<table>
<thead>
<tr>
<th>Localisation</th>
<th>Capacité annuelle (tonnes)</th>
<th>Valeur totale</th>
<th>Subvention</th>
<th>Pourcentage subventionné</th>
<th>Coût par tonne de capacité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cacouna, Rivière-du-loup</td>
<td>25 742</td>
<td>30 604 841 $</td>
<td>15 539 660 $</td>
<td>51%</td>
<td>1 189 $</td>
</tr>
<tr>
<td>Québec</td>
<td>182 600</td>
<td>217 559 190 $</td>
<td>60 209 970 $</td>
<td>27,68%</td>
<td>1 191 $</td>
</tr>
<tr>
<td>Laval</td>
<td>123 156</td>
<td>223 461 172 $</td>
<td>65 550 000 $</td>
<td>29%</td>
<td>1 814 $</td>
</tr>
<tr>
<td>Mont Saint-Hilaire</td>
<td>7 560</td>
<td>11 933 700 $</td>
<td>7 938 339 $</td>
<td>67%</td>
<td>1 579 $</td>
</tr>
<tr>
<td>Varennes</td>
<td>35 000</td>
<td>57 876 873 $</td>
<td>30 502 000 $</td>
<td>53%</td>
<td>1 654 $</td>
</tr>
<tr>
<td>Saint-Hyacinthe</td>
<td>206 850</td>
<td>80 560 181 $</td>
<td>53 565 459 $</td>
<td>66%</td>
<td>389 $</td>
</tr>
<tr>
<td>Saint-Catherine</td>
<td>16 560</td>
<td>17 764 015 $</td>
<td>9 138 112 $</td>
<td>51%</td>
<td>1 073 $</td>
</tr>
<tr>
<td>Montréal</td>
<td>99 000</td>
<td>349 742 467 $</td>
<td>101 596 005 $</td>
<td>29%</td>
<td>3 533 $</td>
</tr>
<tr>
<td>Moyenne totale</td>
<td>87 059</td>
<td>123 687 805 $</td>
<td>43 004 943 $</td>
<td>46,75%</td>
<td>1 552,74 $</td>
</tr>
</tbody>
</table>

Ministère de l’Environnement et lutte contre les changements climatiques, 2020
Annexe 6 : Estimation du coût d’un système de digestion anaérobie pour une ferme laitière typique au Québec

BIOGAS CALCULATOR

Thank you for using Biogas Calculations tool. The results for your project will be emailed to you shortly.

Biogas Plant Specifications

- **Feedstocks:**
 - 1 452 tons/year of Cow manure
- **Digester Type:** Wet
- **Contaminants Level:** 5%
- **Biogas Usage:** Biomethane to grid
- **Digestate Usage:** Directly to land
- **Solid Content Before Digestion:** 25%TS (solid content should be adjusted for the digester type)

Results

- **Biogas Production:** 1 141 246 m³/yr or 32 m³/hour
- **Biomethane Production:** 66 471 m³ per year or the equivalent of 81 307 L of diesel
- **Total Digestate:** 1 558 tons/year
- **Contaminants to Landfill:** 83 tons/year
- **Greenhouse Gas (GHG) reduction will be around 260 tons CO₂ eq./yr for landfill diversion and 164 tons CO₂ eq./yr for renewable energy production**

Potential Revenue per Year

$1 122 from biomethane sales to gas grid or $106 479 in replacement of diesel for your fleet.

Plant Cost Estimation

The first estimation of the cost, +/- 30%, is $317 723 for your Agricultural Type System.

Bibliographie

